广告

5G 第一个演进版本 R16 冻结,相比 R15 有哪些升级?

时间:2020-07-10 作者:网络整理 阅读:
7月3日23时,国际标准化组织 3GPP 终于宣布 5G标准第二版规范 Release 16 冻结,这也标志着5G第一个演进版本标准完成。2018年冻结的5G第一版标准R15,解决了5G三大场景中的eMBB,而 R16 实现了从“能用”到“好用”, 补足了另外两个三角的能力,即uRLLC和mMTC。
广告

7月3日23时,国际标准化组织 3GPP (3rd Generation Partnership Project)终于宣布 5G标准第二版规范 Release 16 冻结,这也标志着5G第一个演进版本标准完成。R16是3GPP史上第一个通过非面对面会议审议完成的技术标准,不过之后 Release 17 有可能因疫情影响推迟。

国际电信联盟ITU为5G定义了三大应用场景,即eMBB(增强型移动宽带)、mMTC(海量机器类通信)、uRLLC(超可靠、低时延通信)。

3GPP于2018年冻结了5G第一版R15。R15在制定过程中,力求以最快的速度产出“能用”的标准,满足了5G多方面的基本功能,解决了5G三大场景中的eMBB。 而刚完成的 Release 16 实现了从“能用”到“好用”, 属于5G增强版本,主要研究内容为eMBB功能增强、毫米波增强、uRLLC增强功能等,补足了另外两个三角的能力,即uRLLC和mMTC。

5G标准最新时间表(图自:3GPP)

“向垂直行业扩展”和“功能增强”是R16的重头戏,控制工程网对这两大类进行了详细介绍。

向垂直行业扩展

  5G+TSN

  为了扩大潜在的工业互联网用例,比如工厂自动化、电网配电自动化等,R16支持5G与TSN(Time Sensitive Networking,时间敏感网络)集成。

  什么是TSN?

  传统以太网技术只能实现“尽力而为”的通信,无法满足工业制造应用的高可靠、低时延需求,因此,面向工业自动化需将传统“尽力而为”的以太网升级为可提供“确定性”服务。

  同时,现有的工业协议众多,彼此孤立,各种协议使用不同的“语言”,一方面给实时通信带来了难度,另一方面难以实现统一集成,增加了维护和运营成本。

  在这样的背景下,TSN应运而生,它由IEEE定义标准,可基于标准以太网技术提供确定性服务,并提供标准化统一的、经济的解决方案。

  5G+TSN,即5G系统与TSN网络集成,基于5G uRLLC的低时延高可靠能力,满足TSN架构的四大严苛的功能需求:时间同步、低时延传输、高可靠性和资源管理。5G与TSN融合后,可通过5G NR无线替代工厂内的有线网络,让工业生产更加柔性化。

  uRLLC增强

  为了支持工业领域的低时延、高可靠通信需求,在3GPP R15版本中,主要通过更大的子载波间隔(numerology)、Mini-slots、快速HARQ-ACK、Pre-scheduling等技术来降低空口时延,并通过PDCP复制传输、增强数据与控制信道的传输系统参数等技术来提升传输可靠性。

  R16版本将通过PDCCH监视功能、支持多个HARQ-ACK、无序PUSCH调度、UE优先级和多路复用等多个功能来进一步增强uRLLC。

  比如在可靠性增强方面,R15支持两条支路的PDCP层分集传输,即数据包在PDCP层复制,再通过在两条无线链路上传输相同的数据的方式,来抵御无线环境恶化带来的影响,保障通信链路的可靠性。为了进一步增强可靠性,R16对 PDCP复制机制进行了增强,最高可支持4路复制数据传输,同时增强了对激活/去激活PDCP复制的控制。

  非公共网络(NPN)

  NPN,Non-Public Network,就是基于3GPP 5G系统架构的专用网络,它将5G扩展到传统的公共移动网络之外,对于使能垂直行业数字化转型至关重要。

  NPN包括两种部署方式:独立部署和非独立部署,即SNPN(独立的非公共网络)和PNI-NPN(公共网络集成NPN)。

  在非独立部署模式下,垂直行业可基于5G网络切片技术与运营商共享RAN、共享核心网控制面,或共享整个端到端5G公网(即端到端网络切片)等来建设5G专网。

  在独立部署模式下,垂直行业独立部署从基站到核心网到云平台的整个5G网络,可以与运营商的5G公网隔离。这意味着,工厂或园区内的设备信息、控制面信令流量、用户面数据流量等都不会出园区,可满足工业领域严苛的数据安全、低时延和高可靠需求。当然,对于园区内的语音、上网等非生产型业务,也可以通过防火墙与运营商公网互连。

  那在独立部署模式下,垂直行业的频谱资源从哪里来呢?可以向运营商租用,也可以从监管机构申请,比如德国和日本就专门为垂直行业分配了专网频段,工业巨头们向政府申请并支付相应的费用就可以使用了。

  NR-U

  运营商的5G公网工作于授权频谱,它是提供广覆盖、高质量5G无线服务的基石,但5G公网也需要非授权频谱来补充容量,就像今天的LTE与Wi-Fi共存互补一样。

  于是5G NR-U来了。

  5G NR-U,全称5G NR in Unlicensed Spectrum,即工作于非授权频谱的5G NR。它将5G NR工作于5GHz和6GHz的非授权频段。

  5G NR-U包括两种模式:LAA NR-U(授权频谱辅助接入NR-U)和Stand-alone NR-U(独立NR-U)。

  LAA NR-U依托于运营商的授权频谱,将运营商的NR授权频谱作为锚点来“聚合”非授权频段,以利用未授权频谱资源增强运营商网络容量和性能,尤其适用于一些人群集中的室内场所,比如体育馆和购物中心等。

  Stand-alone NR-U不需要授权频谱做锚点,可完全独立地在非授权频谱上部署单个5G接入点或5G专网。这和今天企业自建Wi-Fi网络的模式一样,只不过使用的是5G NR技术。

  5G LAN

  5G局域网支持在一组接入终端间构建二层转发网络,并通过5G SMF与UPF的交互实现终端组内数据交换和用户面路径选择。5G LAN提供了组管理服务,使第三方(AF)可以创建、更新和删除组,以及处理网络中的5G虚拟网络(VN)配置数据和组成员UE的配置。

  5G V2X

  众所周知,蜂窝车联网(C-V2X)旨在把车连到网,以及把车与车、车与人、车与道路基础设施连成网,以实现车与外界的信息交换,包括了V2N(车辆与网络/云)、V2V(车辆与车辆)、V2I(车辆与道路基础设施)和V2P(车辆与行人)之间的连接性。

  V2X消息可以通过Uu接口在基站和UE之间传输,也可通过Sidelink接口(也称为PC5)在UE之间的直接传输,即设备与设备之间直接通信。

  为了将蜂窝网络扩展到汽车行业,3GPP在R14引入了LTE V2X,随后在R15对LTE V2X进行了功能增强,包括可在Sidelink接口上进行载波聚合、支持64QAM调制方式,进一步降低时延等。

  进入5G时代,3GPP R16版本正式开始对基于5G NR的V2X技术进行研究,以通过5G NR更低的时延、更高的可靠性、更高的容量来提供更高级的V2X服务。

  R16版本的NR V2X与LTE V2X互补和互通,定义支持25个V2X高级用例,其中主要包括四大领域:

  ●车辆组队行驶,其中领头的车辆向队列中的其他车辆共享信息,从而允许车队保持较小的车距行驶。

  ●通过扩展的传感器的协作通信,车辆、行人、基础设施单元和V2X应用服务器之间可交换传感器数据和实时视频,从而增强UE对周围环境的感知。

  ●通过交换传感器数据和驾驶意图来实现自动驾驶或半自动驾驶。

  ●支持远程驾驶,可帮助处于危险环境中的车辆进行远程驾驶。

  NR定位

  5G时代大量的应用需要精准定位,比如工业AGV、资产追踪等,尤其是室内精准定位,可卫星定位在室内无法使用,LTE和WiFi定位技术又不精准,为此,5G在R16版本中增加了定位功能,其利用MIMO多波束特性,定义了基于蜂窝小区的信号往返时间(RTT)、信号到达时间差(TDOA)、到达角测量法(AoA)、离开角测量法(AoD)等室内定位技术。

  通过这些定位技术,对于对定位精度要求更为严格的一些商业用例,至少需达到以下要求:

  ●对于80%的UE,水平定位精度优于3米(室内)和10米(室外)。

  ●对于80%的UE,垂直定位精度优于3米(室内和室外)。

功能增强

  2-STEP RACH

  RACH,即随机接入信道,它是5G终端开机时向5G网络发出的第一条消息,因此对其进行优化设计非常重要。

  在R15版本中,基于竞争的随机接入过程是一个四步过程(如下图)。四步随机接入过程需要在UE和基站之间进行两个往返周期,这不仅增加了等待时间,还导致了额外的控制信令开销。

  在R16版本中,采用了两步随机接入的机制,其将前导preamble(Msg1)和Scheduled Transmission (Msg3)合并为MsgA,将Random Access Response(Msg2)和Contention Resolution消息(Msg4)合并为MsgB。

  IAB

  IAB,Integrated Access and Backhaul for NR,即5G NR集成无线接入和回传,其可通过扩展NR以支持无线回传来替代光纤回传。

  IAB尤其适用于5G毫米波。由于毫米波传输距离短,需要部署密集的微站,意味着需要挖沟架线敷设密集的光纤回传,而IAB通过无线回传替代光纤,可以大幅降低部署难度和成本。

  在IAB技术下,接入链路可以与回传链路使用相同的频段,称为带内工作;也可采用不同的频段,称为带外工作。

  移动性增强

  在传统4G网络和5G R15版本中,移动终端从源小区切换到目标小区时,移动终端会在短时间内无法发送或接收数据。具体的讲,移动终端与目标小区建立连接之前通常会释放与源小区的连接,这会导致网络与移动终端之间存在约几十毫秒内的中断。

  同时,在NR高频段波束赋形中,由于需进行波束扫描,可能会导致切换中断时间比LTE更长,且可能导致更多的无线链路故障,从而降低可靠性。

  这是个大问题,5G智能制造、车联网、电网配网自动化等场景要求时延不过几毫秒,且对可靠性要求苛刻。

  为了减少切换中断时间和提高可靠性,R16采用了Dual Active Protocol Stack (DAPS)技术对NR的移动性进行了增强,其允许移动终端在切换时始终保持与源小区连接,直到与目标小区开始进行收发数据为止。也就是说,在切换过程这段极短的时间里,移动终端同时从源小区和目标小区接收和发送数据。

  双连接和载波聚合增强

  R16增强了双连接和载波聚合功能,包括通过更早的测量报告减少载波聚合和双连接的建立和激活时间,最小化小区建立和激活所需的信令开销和等待时间,快速恢复MCG链路,支持不同numerologies的载波聚合小区的跨载波调度等等。

  MIMO增强

  R16增强了波束管理和CSI反馈,支持多个传输点(multi-TRP)到单个UE的传输,以及多个UE天线在上行链路的全功率传输,这些增强功能可提升速率,提升边缘覆盖,减少开销和提升链路可靠性。

  UE节能

  由于5G NR更灵活、带宽更大、速率更高,NR终端设备比LTE更耗电。为了减少终端功耗,R16引入了一些新的节能功能,比如Wakeup singal,增强跨时隙调度,自适应MIMO层数量,UE省电辅助信息等。

R16花了整整4年,R17预计将延期冻结

4G从R8到R15历经了8个版本,5G从R15到R16经历了2个版本和4年的时间跨度,整体完成度为30%左右,由于每个版本的时间有限,5G还有大量未完待续的工作。

R16标准还会带来手机芯片能力的升级,芯片厂商大约要花一年时间完成R16标准下手机芯片的量产。

另外值得关注的是,Strategy Analytics对3GPP 5G标准(R15及R16)的贡献调查报告显示,在参与3GPP 5G标准制定的全球600余家公司中,贡献度排名前5位的公司分别为华为,爱立信,诺基亚,高通和中国移动,中国公司占据两席

至于下一版 Release 17 (R17)研究课题于2019年12月确定,主要涉及“天地一体化”。一是5G的MBMS(广播组播)能力,其实这一能力在3G、4G网络中已经有了,但5G MBMS将更匹配用户使用APP的习惯;二是天地空一体化通信,包括上星基站,基站可能部署在卫星上,实现卫星通信;还有对空基站,利用地面基站覆盖整个航线。此外,切片技术、人工智能如何提高5G性能领域也要进一步开拓;卫星、无人机与5G网络的融合也会在R17中展开。

R17重点之一就是加入 NR-Light 标准,容许低耗电可穿戴设备和工业用传感器等使用 5G 网络,最高可达 100Mbps 下载和 50Mbps 上传。此外,也会加入更高频的毫米波支持及更精确的定位能力。原本虽然预计 2021 年9月冻结,但现在可能会延到 2022 年

责编:Luffy Liu

本文综合自3GPP、控制工程网、Unwired Pro、人民邮电报、经济日报、C114、澎湃新闻报道

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • CTSD ADC系列之四:轻松驱动ADC输入和基准电压源,简化信 本文重点介绍新型连续时间Sigma-Delta (CTSD)精密ADC最重要的架构特性之一:轻松驱动阻性输入和基准电压源。实现最佳信号链性能的关键是确保其与ADC接口时输入源或基准电压源本身不被破坏。
  • 小型智能MCU如何在电池供电应用设计中节省PCB空间和BO 通过提供外形小巧且功能强大,并且内置有智能、复杂的特性和功能的MCU,可改进电流消耗和功耗效率,从而延长电池供电联网应用的使用寿命,同时降低设计复杂性、削减系统总成本和缩短上市时间。
  • MEMS + 光子会是传感器领域的下一个大趋势吗? 您是否有过使用光学器件的经验?除了基础发射器(例如LED和激光二极管)和光电探测器之外,光子和MEMS器件呢?您是否认为MEMS和光子的这种融合可能会是“next big thing”?
  • 深度感应将机器视觉带进全新维度 什么是人类视觉能做到而计算机视觉所不能的?人类从三个维度感知世界,而深度传感器是实现更高级别机器视觉并释放自动驾驶功能的关键。EE Times Europe团队对当前3D视觉格局进行了研究,以期更清晰地了解其市场驱动因素、元器件供应商面临的机遇和挑战,以及实现更高级别深度敏感度的新兴技术。
  • 提高前端的增益的最佳方法是? 让我们冷静一下,为了改善整个信号链,要在第一级电路上花10倍的时间以及精力。如果你在第一级增益级中获得纯净的低噪声信号,后级电路的设计将会很简单。
  • 交错式反相电荷泵之一:用于低噪声负电压电源的新拓扑结 精密仪器仪表或射频(RF)电路中的噪声必须最小化,但由于这些系统的特性,降低噪声要应对许多挑战。多种多样的解决方案来产生低噪声电源。这些解决方案中的大多数设计用于产生正电压轨,只有很少的专用IC用于产生负电压。当负电压需要为低噪声器件(如RF放大器、开关和数据转换器ADC/DAC)供电时,选择范围特别有限。
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。

  • ​快人一步,一触即发|芯海科技信号 视频来源:iQOO手机官方微博8月17日晚,iQOO8系列未来电竞旗舰重磅发布,通过屏下双控压感实现更多样的操控体验,双指变四指手速度倍增,在保持机身简洁的同时助你成为自带BUFF的竞技
  • 泰艺电子推出小型化恒温控制晶体振 泰艺电子,频率控制解决方案的领先供货商,推出全新 NN 系列恒温控制晶体振荡器(OCXO),能够满足严格的频率稳定度要求,同时具备优越的相位噪声性能。
  • 均衡的秘密之CTLE 黄刚 | 文CTLE是什么?上篇文章也提到了,直白的翻译为连续时间线性均衡。它是在接收端芯片上的一种技术。之前也提到了,它的作用可以在传输损耗较大的链路,有效的改善接收端眼图的性能。对于有过高速串行信
  • 半导体招聘!高薪职位!  中国半导体论坛 振兴国产半导体产业!    1.宁波比亚迪半导体有限公司工艺工程师设备工程师技术开发工程师2.北方华创微电子装备有限公司工艺工程师射频工程师清洗机工艺工
  • 国内连接器上市公司最新半年战报出炉!爆净利大降五成的业绩地雷 近期,国内连接器上市公司陆续发布2021半年报。 今年上半年,汽车、家用电器、消费电子、通讯等行业延续去年下半年的恢复性增长趋势,国内大部分连接器厂商的营收均出现不同程度增长。 但
  • 欧盟将对英伟达收购ARM案展开正式调查 | ​我国已成为6G专利申请的主要来源国 点击上方蓝字关注我们1 欧盟将对英伟达收购ARM案展开正式调查 8月27日消息,据媒体报道,在监管机构与美国芯片公司进行了数月的非正式讨论后,欧盟将于九月初对英伟达计划收购英国芯片设计商ARM的交易展
  • 台积电涨价,iPhone13将提价!  中国半导体论坛 振兴国产半导体产业!    8月27日消息,据报道,苹果计划提高iPhone 13系列的价格,以弥补其主要芯片代工厂台积电涨价所带来的成本上升,从而“减
  • 韩国第二大晶圆代工厂东部高科可能被出售? 点击上方图片直接报名会议尽管全球晶圆厂加速扩产,但汽车产业仍然受困于“缺芯“之痛。在产能严重供不应求的背景下,任何一家能够生产芯片的工厂都被业界所关注。据业内人士透露, LG和现代汽车等公司都有意收购
  • 高速串行简史(四):开挂的自同步方式就是扫地高僧,你怎么看? 周伟 | 文 高速串行信号相对于并行信号最主要的就是通信方式的改进,这种通信方式又叫自同步方式,也即两块芯片之间通信,其中发送芯片产生的数据流同时包括数据和时钟信息,如下图所示。要实现上图所
  • 产业基金寻找项目投资! 需求单位:国内投资机构项目标的:第三代半导体(SiC,GaN)、车用半导体材料,高纯电子化学品、半导体大硅片项目要求:已有实际生产运营业绩和行业客户(或潜在客户)基础如果贵公司有相关的项目、技术投融资
  • 探讨电路仿真的未来 今年早些时候,IEEE 微波理论和技术学会 (MTT-S) 授予 Qorvo 研究员 Michael Roberg 博士 2021 年度杰出青年工程师奖。该奖项旨在表彰
  • 蹲点拼手速?Python秒杀神器赶紧收下 “朋友最近跟师兄学了个黑科技,每天鼓捣一下,俩月挣了几万块。”他还趁着挖矿热潮,倒卖了一波原价显卡,4张华硕 RTX 3080Ti,挣了8k。这玩意我抢了一个月都没抢到,他居然抢到了4张?“
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了