广告

运用可扩展多核处理器满足嵌入式应用日益增长的性能需求

时间:2020-09-30 作者:Michael Thompson, 新思科技高级产品营销经理 阅读:
下一代嵌入式应用需要对大型CPU集群和专用硬件加速器提供可扩展的支持,以实现所需的性能。大型多核处理器需要新的架构方法来提供更高的性能,并且不会给嵌入式设计者带来其他实现和时序收敛问题。
广告

引言

由于工艺节点从云端拓展到互联网边缘与端点,高端嵌入式应用也随之发生转变。性能需求迅速演进,并改变了处理器架构及其在设计中的实现方式。这是增加多核处理器的应用以提供更高性能的背后原因。目前大多数高端处理器都支持双核和四核配置。有些处理器最多支持8个CPU核心,但即便如此无法满足存储、汽车、网络和5G等新兴应用的性能需求。下一代嵌入式应用需要对大型CPU集群和专用硬件加速器提供可扩展的支持,以实现所需的性能。大型多核处理器需要新的架构方法来提供更高的性能,并且不会给嵌入式设计者带来其他实现和时序收敛问题。

嵌入式性能面临的挑战

毋庸讳言,先进工艺节点已无法像从前那样提供更高时钟频率和更低功耗。各代工艺节点的逻辑速度在持续增长,但内存访问时间却没有变化(图1)。处理器中的限速路径几乎总是经过内存。由于半导体物理学的真正局限性,这类情况在未来工艺节点上也不太可能发生转变。

图1:嵌入式存储器性能差距

同时,嵌入式应用的最高时钟频率已达到1GHz–2GHz范围(图2)。诚然,有些时钟频率高于2GHz,但这是例外。对于多数应用而言,这是无法实现的。功耗和面积都是有限的,这两者都会随着时钟频率迅速增加。大多数嵌入式设计的时钟频率都低于1GHz。未来这一趋势不会改变。就多数嵌入式设计而言,通过增加时钟频率来提高性能是不现实的。

问题在于针对嵌入式应用的性能需求在不断增多。这是由竞争、新特性的添加和应用空间需求的变化所造成的。例如,更大容量和更高访问速度的需求使得SSD驱动器的尺寸迅速增大。此外,计算机储存和AI功能也被添加至嵌入式应用中,以延长驱动器寿命和提升数据访问性能。因此上述综合因素都对SSD控制器以及用于实现新功能的处理器提出了更高的性能需求。 

图2:嵌入式处理器的最高速度为2GHz

提高处理器性能

许多方法已经用于提高处理器性能。多年来,增加流水线级数一直被用于解决内存限速问题。例如,DesignWare® ARC® HS处理器具有10级流水线,两个周期的内存访问,能够在16FFC工艺中提供1.8GHz的时钟频率(最差情况下)。嵌入式设计的时钟频率是有限制的,因此在处理器的流水线上增加更多的处理级别并不会带来什么改善。今后这一情况可能会改变,但现如今10级流水线是嵌入式设计的最佳选择。 

就性能增益与增加的面积和功耗对比而言,超标量实现是一个很好的折衷方案。从单一发射架构转变至双发射架构能够在面积和功耗有限增加的情况下将RISC性能提升40%。对于嵌入式处理器来说,这是一个很好的折衷方案。采用三发射或四发射架构将会进一步增加CPU面积与功耗,且性能提升幅度较小。以任何代价提高性能从来都不是嵌入式处理器的目标。

添加乱序(OoO)执行可以提高嵌入式应用的性能,且不会增加时钟频率。通常,支持完整乱序的CPU会给嵌入式应用带来适得其反的效果。而采用有限乱序的方法可以在不增加处理器面积的情况下获得最佳性能提升。有限乱序通常用于高端嵌入式处理器。

缓存的目的是为了让内存更加靠近处理器,从而提高性能。缓存支持处理器的单周期数据存取。将处理器所需信息存放于缓存中能够提升性能。经常使用的代码和数据保存在一级缓存中。使用较少的代码和数据保存在访问速度较慢的二级缓存或外部内存中,并在需要时进行读取。对于多核处理器来说,保持一级数据缓存之间的一致性也可以提高性能。一级缓存和一致性在嵌入式处理器中很常见,而二级缓存(和三级缓存)仅用于高端应用。

在嵌入式设计中采用多个处理器的趋势正不断演进。几年前,一个典型的片上系统(SoC)只包含一到两个处理器。如今,即便是低端设计,处理器数量也超过5个,而且还在不断增加。为了支撑这一转变,中高端嵌入式应用的处理器提供了多核实现方式。支持两个、四个和八个CPU核心的处理器已经推出。程序员可以使用Linux或其他操作系统在CPU内核之间顺畅地进行操作,同时平衡执行以提高性能。

硬件加速器正越来越多地应用于嵌入式设计。它们以最小的功耗和面积提供高性能,同时减轻处理器的负担。硬件加速器的主要缺点是它们的不可编程性。添加加速器使之与处理器并行工作可以缓解这种情况。然而,现有处理器只能有限度地支持硬件加速器,有的甚至无法提供支持。有些处理器(如ARC处理器)支持自定义指令,允许用户向处理器流水线添加硬件。尽管自定义指令很诱人,但硬件加速器也带来了其他好处,与处理器并行使用时,可以显著提高性能。

嵌入式应用的处理器性能提升存在许多挑战。处理器已经支持更深层次的流水线技术,超标量实现和乱序功能能够有所帮助,但也只能到此为止。缓存技术已经非常丰富,一致性也是如此,因此不太可能取得进一步的进展。在设计中采用更多的CPU核心数与硬件加速器是嵌入式设计人员正采取的更高性能实现途径。

下一代嵌入式处理器架构

下一代处理器将支持大型多核实现和硬件加速(图3)。处理器供应商要做的不仅仅是向现有处理器添加接口。支持4个或8个CPU内核的处理器已经达到了最大频率限制,并且在时序收敛方面可能会出现重大问题。增加更多的内核只会让这一问题变得更糟糕。下一代处理器必须从内部处理器互连的完全重构开始,改进时序收敛,解决速度限制,并增加内部带宽。外部接口的带宽也必须增加,以支持数据进出处理器。

图3:下一代嵌入式处理器架构

服务质量(QoS)技术在片上网络(NOC)中得到了广泛的应用,但在多核处理器中的应用却很有限。这种情况将在下一代处理器中发生改变,让程序员能够管理每个CPU核心和加速器的内部带宽,从而最大限度地提高性能。这取决于应用,虽然并非每个设计都需要服务质量技术,但在其他设计中,它对于确保可预测性能至关重要。

大型处理器集群的优势

大型多核处理器比小型多核处理器具有优势。采用一个具有12个CPU核心的处理器,而不是使用具有4个CPU核心的三个处理器集群,将减少CPU核心之间的延迟,并支持对内核的直接窥探。大型处理器集群的另一个优势是能提供更优越的软件扩展性。具有12个CPU核心的处理器为程序员提供了更大的软件分区灵活性,用于处理任务的核心数量可以根据需要的性能动态进行分配。在多个处理器集群中,由于缺乏CPU内核之间的统一访问,因此很难获得这种级别的软件性能控制。

大型多核处理器也将从与硬件加速器的紧密耦合中获得优势。将硬件加速器接口移动到处理器内部,而不是通过SoC总线连接它们,将减少SoC总线上的延迟和流量,同时提高数据共享和系统性能。采用共享用户寄存器也可以提高加速器上可编程控制的效率。

ARC HS5x/HS6x

新思科技公司(Synopsys)下一代DesignWare ARC HS5x和ARC HS6x处理器IP利用前面描述的许多方法来提高处理器性能。这些处理器具有高速10级、双发射流水线,在功耗和面积有限的情况下提高了功能单元的利用率。ARC 64位 HS6x处理器具有完整的64位流水线和寄存器文件,支持64位虚拟地址空间和52位物理地址空间,可以直接寻址当前和未来的大内存,并支持128位加载和存储,以实现高效的数据移动。

图4:DesignWare ARC HS5x/HS6x处理器IP框图


32位ARC HS5x和64位HS6x处理器的多核版本都包含一个先进的高带宽内部处理器互连结构,其设计旨在通过异步时钟和高达800 GB/s的内部聚合带宽来简化时序收敛。新款ARC HS处理器的多核版本包括一个创新的互连结构,可连接多达12个核心,支持多达16个硬件加速器的接口。为了进一步简化时序收敛,每个核位于自己的功率域中,并且与其他核具有异步时钟关系。跟所有ARC处理器一样,HS5x和HS6x处理器都高度可配置,并采用ARC Processor Extension(APEX)技术,支持自定义指令,可满足每个嵌入式应用的独特性能、功耗和面积要求。

为了加速软件开发,ARC HS5x和HS6x处理器由ARC MetaWare开发工具套件提供支持,可生成高效代码。处理器的开源软件支持包括Zephyr实时操作系统、优化的Linux内核、GNU编译器集合(GCC)、GNU调试器(GDB)和相关的GNU编程实用程序(二进制工具)。 

总结

由于嵌入式应用的性能需求将日益增多,嵌入式应用中所采用的处理器也必须随之提高性能。鉴于面积与功耗的有限性,以及处理器性能简易提升已取得进展,这将面临挑战。先进工艺节点不再像以前那样带来性能提升,嵌入式处理器的速度也受到了限制。超标量和乱序功能在高端处理器中很常见,但64位(尽管必要)提供的性能提升有限。新一代多核处理器需要支持8个以上的CPU核心数,并需要采用硬件加速器内部互连结构。新处理器如DesignWare ARC HS5x和HS6x处理器IP将提供可扩展的性能和功能,并让设计师能够解决其嵌入式应用的功耗和面积需求。新款处理器采用先进的架构与高速内部互连结构,不仅满足了当今高端嵌入式应用的性能需求,同时也为未来设计留下了足够空间。  

责编:Amy Guan

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • Tempus DRA 套件加速先进节点技术 Cadence 持续创新并开发了 Cadence Tempus 设计稳健性分析(DRA)套件,提供解决上述问题所需要的分析能力。该套件采用先进的建模算法,赋能工程师分析,识别并纠正对变化极为敏感的关键设计要素,包括适用于模块级的 Tempus ECO Options 和子系统/全芯片级的 Cadence Certus 收敛解决方案,两者皆可在 Innovus 设计实现系统中调用。
  • 人工智能开始为电子设计决策 虽然人工智能和机器学习的应用越来越广泛,但在繁杂的电子设计中,能够帮助工程师实现什么类型的决策呢?工程师又将如何看待在设计中让人工智能进行这些决策呢?本文所揭示的一个设计趋势是,绝大多数的工程师们都信任人工智能,认为它们会在建模设计、元器件选型、加快新产品上市方面发挥越来越大的作用。
  • 从FPGA到ASIC,人工智能芯片设计之路 对于普通消费者,人工智能、机器学习、数字孪生、元宇宙这类科技名词简直让人目不暇给,其实这些都预示数字化大潮的来临。然而,如果没有好的大芯片,恐怕一切都是空谈。本文提出大芯片的设计之路,就是从架构到FPGA,再移植到ASIC。但这并非是平坦路,转换过程中存在各式各样的挑战。各团队必须清晰理解意图,牢记设计初衷。
  • 为什么说定制计算是大势所趋,而RISC-V架构是天选之子? 如果是做定制SoC,用什么CPU架构好?之前的厂商普遍采用Arm,而这一情况在近年开始改变,越来越多厂商开始尝试使用提供开源指令集架构(ISA)的RISC-V。
  • 谷歌发布多模态大模型Gemini,称强于OpenAI技术 所谓多模态大模型,就是和市面上现有大模型相比,可以归纳并流畅地理解、操作以及组合不同类型的信息,包括文本、代码、音频、图像和视频。在灵活度上,从数据中心到移动设备上,它都能够运行,而不需要额外的专门处理或转换。
  • 中国合作伙伴出货量超300亿颗,Arm持续支持本土生态系统 目前中国合作伙伴基于Arm架构芯片的总出货量已累计超过300亿颗,Arm在中国有近400家技术授权客户和超过400万名开发者,其所构建的Arm全面计算解决方案(Total Compute Solutions)、Arm Neoverse™平台、Arm Corstone™、SOAFEE等解决方案,为合作伙伴加快产品上市进程,并实现差异化提供了坚实的基础。
  • 受惠于折叠手机渗透率提升,预估2024 根据TrendForce集邦咨询最新OLED技术及市场发展分析报告统计,在近期发表的摺叠新机中,UTG的市场渗透率已逾九成,随着摺叠手机规模持续成长,预估2023年UTG产值将达3.6亿美元;2024年可望挑战6亿美元。
  • 2023年第三季全球前十大晶圆代工产 随着终端及IC客户库存陆续消化至较为健康的水位,及下半年iPhone、Android阵营推出新机等有利因素,带动第三季智能手机、笔电相关零部件急单涌现,但高通胀风险仍在,短期市况依旧不明朗,故此波备货仅以急单方式进行。此外,台积电(TSMC)、三星(Samsung)3nm高价制程贡献营收亦对产值带来正面效益,带动2023年第三季前十大晶圆代工业者产值为282.9亿美元,环比增长7.9%。
  • 治精微推出具过压保护OVP、低功耗 治精微推出具过压保护OVP、低功耗、高精度运放ZJA3018
  • 无线技术确保人们在家庭、工作和娱 无线技术每天都在拯救生命,有些非常方式是人们意想不到的。在美国加利福尼亚州Scotts Valley,一名路过的慢跑者发现一处住宅冒出火焰后,按响了门铃,试图通知屋主。屋主不在家中,但无线门铃连接到了智能家居中枢,提醒屋主慢跑者试图联系。屋主立即向他提供了安全密码,让他跑进房子,从火场中救出了宠物。
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了