反激式转换器在连续导通模式 (CCM) 和非连续导通模式 (DCM)下都可以工作。但对许多低功耗和低电流应用而言,DCM反激式转换器更加紧凑而且成本更低。本文将详细介绍此类转换器的设计步骤。

反激式转换器在连续导通模式 (CCM) 和非连续导通模式 (DCM)下都可以工作。但对许多低功耗和低电流应用而言,DCM反激式转换器更加紧凑而且成本更低。本文将详细介绍此类转换器的设计步骤。

DCM操作的特点是转换器的整流器电流在下一个开关周期开始之前即减小至零。在切换前将电流降至零将减少场效应晶体管 (FET) 的耗散并降低整流器损耗,而且通常也会降低变压器的尺寸要求。

而CCM操作则直到整个开关周期结束时仍保持整流器的电流传导。我们在“关于反激式转换器的几大关键设计考量因素”和 “CCM反激式转换器的设计细节及损耗计算”这两篇文章中曾介绍了反激式转换器的设计考量和CCM 反激式转换器的功率级公式。CCM操作最适合中高功率应用,但如果是低功率应用,则可以使用DCM 反激式转换器,请继续阅读下文。

图1显示了一个简化的反激原理图,它可以在DCM 或 CCM 模式下运行,并根据时序在模式之间进行切换。为了保持电路在DCM 模式下操作,如本文将要评估的,关键组件的开关波形应具有图 2所示的特性。

在占空比周期D内,FET Q1导通,电路开始工作。T1原边绕组中的电流始终从零开始,上升至由原边绕组电感、输入电压和导通时间t1决定的峰值。在此 FET 导通时间内,二极管 D1因T1 的副边绕组极性而反向偏置,迫使所有输出电流在t1和t3期间由输出电容器 COUT 提供。

图 1:可在DCM或CCM模式下运行的简化反激式转换器原理图

当 Q1 在周期 1-D 期间关断时,T1的副边电压极性反转,使D1 将电流传导至负载并对 COUT进行充电。D1中的电流在t2期间从其峰值线性下降至零。一旦T1存储的能量耗尽,在剩余时间段 t3 中只会剩余振铃。这种振铃主要是由于T1 的磁化电感以及 Q1、D1 和 T1 的寄生电容造成的。这在 t3 期间通过Q1的漏极电压很容易看出来,该电压从 VIN 加反射输出电压下降回VIN,因为一旦电流截止,T1就无法支持电压。(注意:t3 中若没有足够的死区时间,将可能进入CCM操作。)CIN 和 COUT 中的电流与Q1和D1中的电流相同,但没有直流偏移。

图 2 中的阴影区域A和B突出显示了变压器在t1和t2期间的伏微秒积,它们必须保持平衡以防止饱和。区域“A”代表 (Vin/Nps)×t1 ,而“B”代表 (Vout+Vd)×t2,均以副边为参考。Np/Ns是变压器原边与副边的匝数比。

图2:DCM反激式转换器的关键电压和电流开关波形以及设计人员须指定的几个关键参数。

表1详细说明了DCM相对于CCM的特性。DCM的一个关键属性是,无论变压器的匝数比如何,具有较低的原边电感都会降低占空比。它让您可以限制设计的最大占空比。如果想要使用特定控制器或保持在特定的导通或关断时间限制之内,这一点可能很重要。较低的电感需要较低的平均能量存储(尽管具有较高的峰值FET电流),与CCM设计相比,通常也允许使用更小的变压器。

DCM 的另一个优点是这种设计消除了标准整流器中的 D1 反向恢复损耗,因为电流在 t2 结束时为零。反向恢复损耗通常表现为 Q1 中耗散的增加,因此消除它们会降低开关晶体管上的应力。输出电压越高,该优势愈加明显,因为整流器的反向恢复时间也随着二极管额定电压的增大而增加。

DCM的优点 DCM的缺点
原边电感低于CCM 更高的峰值原边电流
通过电感设置最大占空比 更高的峰值整流器电流
可以使用更小的变压器 增加了输入电容
无整流器反向恢复损耗 增加了输出电容
无(或最小)FET 导通损耗 可能会增加电磁干扰
控制回路中没有右半平面零点 比 CCM 更宽的占空比操作
低输出功率的最佳选择 增加了带宽变化

表1:DCM 反激式设计相对于CCM设计的优缺点

开始设计之前,开发人员需要了解几个关键参数以及基本的电气规范。首先要选择开关频率 (fsw)、所需的最大占空比 (Dmax)以及估计的目标效率。然后根据公式1计算出时间t1:

接下来,用公式 2 估算变压器的峰值原边电流 Ipk。对于公式 2 中的 FET 导通电压 (Vds_on) 和电流采样电阻电压 (VRS),先假设较小的0.5 V压降比较适合,稍后可以更新压降值。

根据图2中A和B面积相等,通过公式3计算所需的变压器匝数比Np/Ns:

其中 x 是t3所需的最小空闲时间(从x = 0.2开始)。

如果想要改变Np/Ns,则调整 Dmax并再次迭代计算。

接下来,用公式 4 和 5 来计算 Q1 (Vds_max) 和 D1 (VPIV_max) 的最大“平顶”电压:

这些组件常常会因变压器漏电感而产生振铃,根据经验,实际值预计要比通过公式4和5得出的值高10-30%。如果Vds_max高于预期,减少Dmax可以降低它,但VPIV_max会增加。此时需要确定哪个组件电压更关键,并在必要时再次迭代计算。

用公式 6 计算 t1_max,其值应与公式1接近:

用公式 7 计算所需的最大原边电感:

如果选择的电感低于公式 7 算出的电感,则根据需要进行迭代计算,增加x并减少Dmax,直到Np/Ns和Lpri_max 等于所需要的值。

然后,利用公式 8来计算 Dmax

并分别利用公式9 和 10 计算最大Ipk及其最大均方根 (RMS) 值:

根据所选控制器的电流采样输入最小电流限制阈值 Vcs(公式 11),计算允许的最大电流采样电阻值:

使用公式 9得到的Ipkmax值和RS来验证假设的FET Vds压降和公式2中的采样电阻器VRS 是否接近;如果差别较大,则再次迭代。

利用公式 12 和 13以及公式10 的结果,来计算RS的最大耗散功率和Q1的传导损耗:

FET 开关损耗通常在Vinmax处最高,因此最好利用公式14计算整个VIN范围内的Q1开关损耗:

其中Qdrv是FET总栅极电荷,Idrv是预期的峰值栅极驱动电流。

公式 15 和 16 用于计算FET非线性Coss电容充电和放电的总功率损耗。公式15中的被积函数应与0 V至实际工作Vds之间的实际FET Coss数据表曲线严格匹配。Coss损耗通常在高压应用或使用极低RDS(on) FET时最大,其Coss 值也较大。

通过将公式 13、14和16的结果相加来估算总的FET 损耗。

公式17表明该设计中的二极管损耗将大大简化。请确保选择额定副边峰值电流远大于 IOUT的二极管。

输出电容通常选择公式 18 或 19 中值较大的那一个,这两个公式根据纹波电压和等效串联电阻(公式 18)或负载瞬态响应(公式 19)来计算电容:

其中 ∆IOUT 是输出负载电流的变化,∆VOUT 是允许的输出电压偏移,而fBW 是估计的转换器带宽。

用公式 20 计算输出电容器 RMS 电流:

用公式 21 和 22 估计输入电容器的参数:

公式 23、24 和 25 总结了三个关键的波形时间间隔及其关系:

如果需要额外的副边绕组,公式 26 可以轻松计算出额外的绕组 Ns2:

其中 VOUT1 和 Ns1 是稳压输出电压。

变压器原边RMS 电流与公式 10 中的 FET RMS 电流相同;变压器副边RMS 电流如公式 27 所示。变压器磁芯必须能够在不饱和的情况下处理 Ipk。当然还要考虑磁芯损耗,但这不在本文讨论范围之内。

从上述步骤中可以看出,DCM 反激式设计是一个迭代过程。开关频率、电感或匝数比等初始假设可能会根据后面的计算结果(例如功耗)改变。别怕麻烦,根据需要多次迭代执行设计步骤,以实现您需要的设计参数。只要付出努力,就可以实现最佳的DCM反激设计,提供低功耗、紧凑和低成本的解决方案,满足电源转换器的需求。

(参考原文:Designing a DCM flyback converter

责编:Amy Guan

 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
顺应“双碳”战略下电动汽车和可再生能源的发展趋势,安森美(onsemi)近年来聚焦智能电源和智能感知两大核心技术,在汽车电汽化和汽车安全、可持续能源网、工业自动化以及5G和云基础设施等领域加速创新,致力于引领并创建一个更加安全、清洁、智能的世界。
大家都关心制造,但在未来短时期之内,我们很难在既有赛道下将工艺突破到7纳米以下。解决方案在哪?就是在特殊工艺和封装上开辟新的赛道。
对Nowi的收购是一项具有重要战略意义的投资,因为能量采集完美地补足了安世半导体现有的电源管理能力,该决策意味着安世半导体现在可以为客户的产品提供可持续的电池替代品,助力其产品快速面市。
未来光伏户用储能系统的效率和功率密度是最制约未来产品竞争力的重要因素。
如果要获得一个技术非常先进、水平非常高的电源,就需要从很多方面进行突破。能效、面积和电磁辐射就是三个要考虑的重要指标。
利用射频能量为传统电池充电,将可能是一个有前途的替代解决方案。射频电磁波在人们的日常生活环境中无处不在,包括Wi-Fi、蜂窝网络和各种通信系统。通过收集这些射频源的能量,可以无缝地满足智能手表、健康追踪器和智能眼镜等可穿戴设备的充电要求,从而再也无需频繁充电或更换电池了!
根据TrendForce集邦咨询最新OLED技术及市场发展分析报告统计,在近期发表的摺叠新机中,UTG的市场渗透率已逾九成,随着摺叠手机规模持续成长,预估2023年UTG产值将达3.6亿美元;2024年可望挑战6亿美元。
随着终端及IC客户库存陆续消化至较为健康的水位,及下半年iPhone、Android阵营推出新机等有利因素,带动第三季智能手机、笔电相关零部件急单涌现,但高通胀风险仍在,短期市况依旧不明朗,故此波备货仅以急单方式进行。此外,台积电(TSMC)、三星(Samsung)3nm高价制程贡献营收亦对产值带来正面效益,带动2023年第三季前十大晶圆代工业者产值为282.9亿美元,环比增长7.9%。
治精微推出具过压保护OVP、低功耗、高精度运放ZJA3018
无线技术每天都在拯救生命,有些非常方式是人们意想不到的。在美国加利福尼亚州Scotts Valley,一名路过的慢跑者发现一处住宅冒出火焰后,按响了门铃,试图通知屋主。屋主不在家中,但无线门铃连接到了智能家居中枢,提醒屋主慢跑者试图联系。屋主立即向他提供了安全密码,让他跑进房子,从火场中救出了宠物。
英伟达(Nvidia)CEO黄仁勋11日表示,将扩大与越南高科技业者的伙伴关系,支持在当地训练研发人工智能(AI)与数字化基础建设领域的人才。黄仁勋还透露在越南设立芯片中心的构想。根据白宫今年9月提升
自从集成电路发明以后,人类的电子信息技术开始腾飞,60年多年来,在摩尔定律的指导下,半导体集成电路的高速发展彻底改变了电子产品。以计算机为例,1946年诞生的世界第一台数字计算机重30吨,占地约140
11月9日是主题为“预防为主,生命至上”的第32个全国消防安全日,当天,智能建筑电气技术杂志《IBE Talks》栏目第27期特邀请中国勘察设计协会电气分会副会长、清华大学建筑设计研究院有限公司电气总
有奖问卷调查:各位工程师朋友,作为全球知名的授权半导体和电子元器件代理商,贸泽电子 Mouser多年来一直倾心为中国工程师服务,助力本土创新! 时至年终,为了更好的服务工程师朋友,我们特别推出“贸泽电
01 项目简介该项目是使用ESP32模块复刻的Nokia1110,可运行NES游戏模拟器和LVGL,主要功能包括彩屏显示,ADC按键,Type-C充电,USB转串口,DAC音乐播放,SD卡读写,WS2
点击左上角“锂电联盟会长”,即可关注!粉尘、水分和毛刺是锂离子电池生产过程中需要严格控制的关键因素。严格控制电池生产环境的粉尘对锂离子电池的安全和性能至关重要。生产环境粉尘控制不足会导致涂层表面产生大
芝能汽车出品11月,我国动力和储能电池合计产量为87.7GWh,实际拆解估算动力电池约为70.7GWh,同比上升11.5%,环比上升8.4%装车量44.9GWh,同比增长31.0%,环比增长14.5%
点击左上方蓝色“一口Linux”,选择“设为星标”第一时间看干货文章 ☞【干货】嵌入式驱动工程师学习路线☞【干货】一个可以写到简历的基于Linux物联网综合项目☞【干货】Linux嵌入式知识点-思维导
 /记得星标我/比大部分人早一步看见未来乡村振兴,产业兴旺是重点。今年是加快建设农业强国的起步之年,在陕西,陕西移动依托自身信息技术优势,在电子商务、养殖业、农业等方面注智赋能,推动特色产业稳步发展,
近日,懂车帝在漠河举办2023年“懂车帝冬测”活动,问界、小鹏、理想、比亚迪、特斯拉等主流19款新能源车型,进行冬季性能测试。其中,发布的关于在严寒情况下的插电混动车型纯电续航达成率测试结果,其中华为