广告

中国科大成功研发出新型量子机器学习技术,实现数据特征提取

时间:2021-09-01 作者:中国科学技术大学 阅读:
机器学习是指使用计算机从大量历史数据中挖掘隐含规律,并用于后续预测或者分类的过程。机器学习是人工智能的核心,是计算机具有智能的根本途径,其理论和方法已被广泛应用于解决日常应用和科学领域的复杂问题。为了成功完成特定任务,人工智能往往需要大量数据用于总结与分类……
广告
EETC https://www.eet-china.com

据中国科学技术大学官方微博,该校中国科学院微观磁共振重点实验室杜江峰、王亚、李兆凯等人在量子机器学习研究中取得重要进展,研发出新型量子特征提取算法,实验实现了对未知量子系统矩阵的分析与信息提取。该成果以”Resonant Quantum Principal Component Analysis”为题发表在近期的Science Advances上[Science Advances 7, eabg2589 (2021)]。

机器学习是指使用计算机从大量历史数据中挖掘隐含规律,并用于后续预测或者分类的过程。机器学习是人工智能的核心,是计算机具有智能的根本途径,其理论和方法已被广泛应用于解决日常应用和科学领域的复杂问题。为了成功完成特定任务,人工智能往往需要大量数据用于总结与分类,这对计算机系统的存储与处理能力提出了很高的要求。量子机器学习可以将量子算法的并行加速特性应用于人工智能领域中,提升人工智能系统的效率与能力,有望在未来实现基于量子系统的人工智能。

杜江峰院士团队自2012年以来率先开展了量子人工智能的实验研究,相关工作如量子手写识别[PRL 114, 140504 (2015)]是量子人工智能应用于实际问题的最早案例,展示了量子技术加速人工智能问题的潜力;特征值检测[PRL 122, 090504 (2019)\、线性方程组求解[PRA 89, 022313 (2014)]等技术为机器学习中的数据运算提供了快速有效的量子方法。此前的工作及国际上的相关实验研究,多集中在如何处理较理想的数据集。但无论是使用经典还是量子计算机进行机器学习,在获得类似数据集之前都需要对原始数据进行分析和预处理,提取出其中的核心信息用以学习与总结规律。这一过程被称之为数据特征提取,是量子人工智能运行的关键步骤。

使用量子算法进行特征提取的理论思路最早于2014年提出,但其原始设想基于量子相位估计算法,需要大量量子比特作为辅助寄存器,因此一直未能在真实实验体系中予以实现。为解决这一限制,本文研究团队开发出新型基于共振的量子主成分分析技术,将辅助量子比特的需求降低到1个,大大降低实验难度。同时,为减少实际实验中的噪声干扰,该技术还可以结合量子相干保护手段,有利于在实际量子处理器物理平台上达到高精度与高效率的量子计算。

实验中研究人员使用金刚石氮-空位色心量子处理器,演示了对未知量子数据矩阵进行分析与处理的过程。待研究的数据以量子密度矩阵的形式被输入量子处理器,该数据矩阵包含4种不同成分且占比各不相同(对应数据柱高度)。特征提取任务的目标是将该数据的关键特征,即右侧第一组占比最高的成分提取出来,同时尽量去除其他三组数据或噪声。实验中,研究人员使用一个辅助比特作为探针进行扫描,精确定位了密度矩阵中不同成分的强度。通过多次迭代逼近,密度矩阵成分的定位误差被降低到小于0.001,相当于原本10个辅助量子比特才能达到的精度。其后,研究人员锁定该数据矩阵的主要成分并将其隔离提取出来,得到的量子态即为输入数据矩阵的关键特征。实验结果显示,这一特征提取过程达到了90%的提取精度与86%的提取效率,展示了该新技术在真实物理平台上的适用性与精确性。

图:(A)金刚石量子处理器上实现共振量子主成分分析的线路图;(B)通过多次迭代,精确定位量子数据矩阵中不同成分的比例与信息;(C)处理前的原始量子数据;(D)数据矩阵中的关键部分(右侧第一列)被单独提取并储存。

研究结果显示此次研发的新技术可以实现对数据预处理过程的量子加速,高效率提取出量子数据矩阵中的关键特征,用于后续进一步分类与识别。该技术能够提升机器学习的效率和效果,未来有望在较大规模量子处理器上得到应用。

中国科学院微观磁共振重点实验室副研究员李兆凯、博士生柴梓华为该文共同第一作者,杜江峰院士和王亚教授为该文共同通讯作者。该研究得到了科技部、国家自然科学基金委、中国科学院和安徽省等资助。

责编:Luffy Liu

EETC https://www.eet-china.com
本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 如何在MCU上实现AIoT? 人工智能和物联网的结合为MCU开辟了新的市场,赋能越来越多的新应用和新用例,以利用简单的 MCU搭配AI加速来促进智能控制。构建基于MCU的AI解决方案有两种不同的方式。
  • 如何在5万亿美元的市场中,利用智能技术引领新工业发展 到2025年,工业物联网将创造约5万亿美元的市场规模。在庞大的技术驱动市场面前,如何为社会、客户和自己创造价值?
  • 人工智能物联网(AIoT)是什么?这些技术与应用从中获益 AIoT 正在发展新的应用和用例,并将帮助 IoT 发挥其最大潜力。 AIoT 可应用于智能城市、工业自动化、医疗、农业和智能家居等各种市场。我们将持续看到更多将人工智能纳入物联网终端的应用,越来越多的制造商将把人工智能作为重要的投资领域。
  • 万物互联(IoE):机遇与挑战共存的超连接新时代 在当今高度连接的世界中,不仅“物”是相互连接的,组织机构、人和其他系统也是如此。我们要讨论的不是物联网(IoT,Internet of Things),而是万物互联(IoE, Internet of Everything),一个连接了智能设备、人、数据和流程,其间流动着实时信息的网络。
  • 在边缘IoT设备上实现能量采集的技术对比 通过优化无线协议、低能耗微处理器设计、低功耗传感器以及提高微能量采集效率,收集环境能量有助于减少或消除电池使用并延长物联网终端的工作寿命。在对特定微能量收集技术进行融合时,EH PMIC 的最新技术进展可以让系统设计的尺寸、成本和复杂性管理更加灵活。
  • 人工智能安全性又浮上台面 在第一轮对人工智能夸张的担忧想法中,主要包括担心它的恶意、可自我复制,以及类似HAL的机器最终超越它的创造者或在战场上不受控制地攻击。但自那以后,对人工智能的讨论变得更加务实,更多地聚焦于最受关注的安全性问题上。
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。

  • 重磅新品| 纳芯微推出车规LIN收发 纳芯微(NOVOSNS)推出了全新通用车规LIN收发器芯片---NCA1021,可广泛适用于汽车电子子系统的总线接口设计,如电动门锁,电动窗,电动座椅,电动后视镜,玻璃刮水器,座椅加热器等模块,具有线间干扰小,线束少,传输距离长,成本低等优点。
  • 猎豹移动2021年Q3财报:AI和其他收入 本季度猎豹移动持续提升运营效率,Non-GAAP营业总成本及费用同比下降47.4%。其中互联网业务环比扭亏为盈,实现Non-GAAP营业利润180万元。截止到2021年9月30日,公司持有的现金及现金等价物、受限资金及短期投资18.53亿元,长期投资24.23亿元。
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了