广告

工程师笔记 - MOSFET驱动振荡那些事

时间:2021-10-29 作者:维安半导体 阅读:
MOSFET作为栅极电压控制器件,栅源极驱动电压的振荡会极大的影响器件和电源转换器的可靠性,实际应用中严重的栅极振荡还可能会引起器件或电路异常失效。本文将从工程师日常笔记,来分析引起MOSFET栅源振荡的原因是什么?有没有办法消除?
广告

MOSFET作为栅极电压控制器件,栅源极驱动电压的振荡会极大的影响器件和电源转换器的可靠性,实际应用中严重的栅极振荡还可能会引起器件或电路异常失效。

那引起MOSFET栅源振荡的原因是什么?有没有办法消除?本文将从工程师日常笔记,来分析功率MOSFET的GS寄生振荡和振铃的原因与改善措施,以及器件外围驱动参数和器件本身的优化。

图1  MOSFET栅源控制示意图

#1

MOSFET栅极振荡危害

1-1 导致EMI裕量不足

下图2,图3是在一款50W LED电源测试不同MOSFET波形和EMI辐射测试图。

图2  VGS 振荡轻微的波形及辐射测试图

图3  VGS 振荡验证的波形及辐射测试图

由图2、图3可知,振荡轻微的EMI辐射裕量高出约6dB。

1-2 动态负载切换振荡严重导致器件失效

在某款电源动态测试时发现异常比例偏高,经过仔细测试分析发现该电源主开关管存在严重振荡现象如下图4。图4、图6中通道1是MOSFET VGS栅源驱动电压波形。图4中发现MOSFET出现反复的开通和关断。

通过进一步对异常导致失效的样品进行Decap 观察,发现芯片表面栅极压焊点存在较明显烧伤。通过应用端分析,导致栅极振荡是电源在动态负载切换时,MOSFET存在较大的电流应力且电流变化较快。经过应用端PCB布局调整优化等措施后,减小动态负载切换MOSFET电流应力,VGS振荡明显改善。

图4  电源动态测试VGS栅源振荡严重

图5  振荡严重引起失效品Decap

图6  PCB布局调整优化后VGS波形

#2

MOSFET栅极振荡机制分析

MOSFET振荡和振铃的主要原因如下:

2-1 振荡电路的形成

振荡网络形成在电路中,并导致MOSFET的寄生振荡。

振荡的条件是:

a.相位条件

从输出到输入的反馈信号与输入信号在振荡频率上同相。(正反馈回路)

b.振幅条件

由电路中的无源元件引起的损耗低于放大器获得的增益。当电路具有正反馈并提供补偿损耗的增益时,就会发生振荡。

图7  反馈网络示意图

v2=AHv1, Go=v2/v1=AH 当AH为正时,将创建一个正反馈环路;当AH为负时,将创建一个负反馈环路。当正反馈环路的增益AH为1或更大时,它将变得不稳定并振荡。

2-2 漏极和源极之间的浪涌电压

关断期间,漏极和源极之间的振铃电压可能返回到栅极,通过栅极-漏极电容Cgd的正反馈环路连接到栅极端,并导致栅极电压振荡。

2-3 源电感

关断期间由漏极-源极电流的di / dt以及源极引线和导线杂散电感所感应的电压可能导致MOSFET的栅极-源极环路进入LCR谐振状态。

功率MOSFET具有较大的跨导gm和寄生电容。因此,导线和其他杂散电感(栅极,源极和漏极电路之间以及相关互连中的电感)可能会形成正反馈电路,从而导致寄生振荡。振荡电压可能会在正反馈环路和栅极上产生电压过冲,从而导致MOSFET永久损坏。

功率MOSFET易受寄生影响振荡:

a.负载短路时; 

b.在gm变大的瞬态切换期间。

由于MOSFET工作在线性模式(即同时应用Vds和Id),因此可以通过电磁感应,寄生电容和其他因素形成正反馈路径。gm高的MOSFET的环路增益为1或更大时,就会进入寄生振荡。

图8  两种型号MOSFET 跨导 对比

图9  型号1  264V短路启动

图10  型号2  264V短路启动

从图9,10可以看出跨导较小的器件型号2,短路启动VDS漏源电压最大752V,而跨导较大的器件VDS漏源电压最大848V.

2-4 MOSFET 反馈环

图11  Colpitts振荡器等效电路图

Colpitts振荡器寄生振荡的条件表示为:

方程式1: gm≥(Cgs / Cds)/ R3 

R3是漏源电阻       

当满足方程式1时,就会发生寄生振荡。

图12  Hartley振荡器等效电路图

哈特莱Harltey 振荡器寄生振荡的条件表示为

方程式2:

图12中,L1是漏源端寄生电感,L3是栅源端寄生电感。L3越大,L1/L3比值越小,越容易导致振荡。也就是L3 寄生栅源电感越大,越容易振荡。

#3

如何抑制或缓解栅源振荡

3-1 调整驱动电路阻尼比 ζ

方程式3:

驱动电路的阻尼比ζ=0,称无阻尼,系统无穷震荡,不收敛;

ζ由0约接近1,收敛越快。ζ<1 称为欠阻尼,意味着系统存在超调且有震荡,

ζ>1称为过阻尼,意味着系统不超调;

ζ=1称为临界阻尼,意味着系统不超调,且以最短时间恢复平衡状态或者稳定状态。

ζ=1 栅极电阻R计算如方程式4,例如门极回路寄生电感为25nH,门极等效电容为1nf,则临界电阻值是10Ω. L寄生电感越大,临界电阻值越大。

图13  驱动电路的阻尼比ζ

不同对应的栅源驱动波形仿真图

方程式4:

3-2 适当提高MOSFET内部寄生电阻Rgint

Rgint 不是越高越好,维安SJ-MOSFET C2,C4系列内部Rgint 均有提高,维安SJ-MOSFET C2,C4系列通过提高栅极内部寄生电阻降低器件最高开关速度并改善抑制栅极振荡。

图14  MOSFET寄生参数模型

3-3 适当降低低器件跨导gm

方程式2:gm≥(Cgs / Cds)/ R3,可知,适当降低低器件跨导gm,使器件参数不能满足方程式2,这样也就达不到振荡条件。

3-4 适当提高器件阈值电压

适当提高阈值电压可以缓解半桥或者全桥拓扑中上下桥臂直通概率。

小结:主要介绍MOSFET 栅极振荡引起问题并深入分析了其中的原因。结合实际案例验证改善的方法。

登陆维安官方网站,了解更多维安Super junction MOSFET 产品信息:

https://www.way-on.cn/Product-Center/show-299.html

(本文由维安供稿,电子工程专辑对文中陈述、观点保持中立)

责编:Luffy Liu

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 物联网时代的五大硬件元素:感知、计算、执行、连接和安 近两年半导体芯片行业的火爆,让人不禁想去探寻其中的秘密——究竟是什么在背后推动整个行业的增长?在日前举行的英飞凌(Infineon)线上媒体沟通会上,英飞凌科技大中华区安全互联系统事业部市场与业务合作总监南铮认为主要有四大领域,具体到物联网的定义,物联网设备由五大硬件元素组成……
  • 慧能泰推出USB PD3.1完整解决方案 随着USB PD 3.1的发布,USB-IF协会正一步步实现充电统一的愿景,同时也在逐步兑现减少电子垃圾的初衷。为了进一步加大充电功率,从而覆盖更多的受电终端。
  • 拆解Realme X7 Pro,它是否撑得起千元机的地位? Realme作为国产手机里的一员,主打的一直是极致性价比。早前发布的“国潮锦鲤”V15,1399的价格搭配天玑800U的处理器。而X7 Pro是它在2020年末推出的一款千元级的手机,搭载天玑1000+处理器,并配备了65W快充……
  • AI带来高性能计算需求,HBM与CXL成优化硬件效能关键 近几年受到新兴应用的激励,加速了人工智能及高性能计算的发展,且伴随着仰赖机器学习及推论的需求提升,建构出的模型复杂度也随着需求的精细程度有所增加,因此在计算时须处理的数据量亦随之增大。在此情境下,庞大的数据处理量受硬件效能局限,导致使用者在设备的建置面临了效能、容量、延迟度以及成本间的取舍问题……
  • eDP 1.5版本标准发布,取代2015年的eDP 1.4b eDP 1.5保留先前规格的所有主要特色,同时新增更多的功能与效能,包括改良的面板自动刷新协议,搭配强化的VESA Adaptive-Sync协议,将能节省更多电力并提升动态影像质量。
  • 三星宣布成功开发LPDDR5X DRAM,较LPDDR5快1.3倍 三星电子宣布成功开发出其业界首款基于14纳米的下一代移动DRAM -- LPDDR5X(低功耗双倍数据速率5X)。LPDDR5X内存新的变化包括:1、带宽从6400Mbps增至8533Mbps;2、TX/RX均衡改善信号完整性;3、通过新的自适应刷新管理(Adaptive Refresh Management)提高可靠性。
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。

  • 储能与电动汽车应用爆发下,安全可靠 随着汽车设计转向电气化,以及风能和太阳能等可再生能源的部署速度加快,并不断与新推出的储能和电池技术融合。高功率电子成为电池系统的关键部件。这些电子需要与低压数字控制器通信并由其控制,如何实现安全迅速的接口通信是设计可靠电池管理系统的一大挑战。
  • 中国芯应用创新32强出击,众多奖项花 11月16日,第三届IAIC中国芯应用创新设计大赛决赛在深圳前海举行,大赛组委会邀请了来自兆易创新、华大半导体等原厂专家、来自旦恩资本、一本基金、深创投等资深投资机构以及来自中电港、中科院深圳先进院、深半协、深圳中微电、健天电子、史河机器人科技、亚力盛等行业专家作为决赛的评委专家组。
  • 动图了解PCB整个古老制作过程! PCB( Printed Circuit Board),中文名称为印制电路板,是电子元器件的支撑体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。在PCB出现之前,电路是通过点到点的接线组成的
  • 台积电首度表态声援光洋科!期盼尽快平息争议稳定运营 靶材大厂光洋科爆发经营权之争,继联电、南茂、稳懋等客户后,台积电今日也首度表态声援,强调由马坚勇带领的技术团队正与台积电进行多项技术合作,期望光洋科能持续提供稳定的供应服务,快平息并回归正常及稳定运营
  • 高精度运放 高精度运放品牌:E-CMOS     型号:EC5462AR-G(替代AD8052)类型:双通道运放封装:MSOP-8数量:600K品质:全新原包可替代AD8052联系方
  • 【旧文回顾】用了更好的板材,没想到DDR4却……??? 公众号:高速先生作者:孙宜文今天的风儿甚是喧嚣,深南大道上车水马龙,科技园的某栋大厦内,攻城狮雷豹继上次解决了阻抗测试问题后,又做了一个很有意思的项目,背景如下:某款CPU芯片的DDR4仿真。设计采用
  • 晶圆电极电镀(一)激光器电极电镀 今天看到一份其他公司的晶圆芯片的制作工艺流程,其中有一道工艺是采用亚硫酸金钠溶液经过低温成膜形成黄金层。      我们都知道晶圆在进行金属层沉积的时候,常用溅射或者蒸发
  • 特斯拉 | 总投资12亿元!上海工厂再度扩产,明年4月完工 来源 :新京报11月26日,从上海企事业单位环境信息公开平台获悉,特斯拉对上海超级工厂(一期)第二阶段的产线优化项目进行环评公示。环评报告显示,该产线优化项目投资总额高达12亿元人民币,其中
  • 亚化咨询半导体研究系列报告 欢迎征订!如需索取目录欢迎联系亚化咨询朱经理MP: 17717602095(微信同号)Email: rita@asiachem.org
  • 最新!美光和联电和解 11月26日,美光科技与联电共同宣布,两家公司在全球范围内达成和解协议。两家公司将在全球范围内撤回对另一方的投诉,联电将一次性向美光支付一笔未公开的金额。联电和美光期待开展相互的商业合作机会。此案源于
  • 近1000万元!山东天岳等发起碳化硅招标 近日,山东天岳、中电化合物半导体和季华实验室对外发布了碳化硅设备等采购招标需求,合计金额近1000万元。山东天岳招标11月24日,天岳先进科技对外发布了“110kV输变电工程清河站天岳站高压外线接入工
  • 壹悟科技完成近亿元A轮融资! 本轮融资资金将用于产品研发和市场推广等方面。文|壹悟科技CMR产业联盟企业壹悟科技近日宣布完成近亿元的A轮融资,本轮融资由经纬创投领投,老股东创新工场、真格基金跟投,义柏资本担任独家财务顾问。壹悟科技
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了