广告

连接SPI接口器件 - 第一部分

时间:2021-12-07 01:46:49 作者:莱迪思教育能力中心(LEC2) 阅读:
第一篇博文介绍了使用两个时钟域实现连接DAC(亚德诺半导体公司的AD7303 DAC)的SPI接口。
广告

莱迪思CrossLink™-NX FPGA拥有丰富的特性,可加速实现高速和低速接口。本文(系列博文的第一篇)描述了使用CrossLink-NX FPGA连接基于SPI的外部组件。第一篇博文介绍了使用两个时钟域实现连接DAC(亚德诺半导体公司的AD7303 DAC)的SPI接口。第二篇博文将介绍使用单个时钟域实现连接ADC(亚德诺半导体公司的 ADC AD7476)的SPI接口。两个案例中呈现了两种截然不同的实现接口的方法。

两个时钟域的实现方案(dac_2c)

亚德诺半导体公司(ADI)的AD7303模块用作外部DAC。图1显示了接口的时序图和时序参数。在本例中,SCLK频率为30 MHz。时序参数t4、t5和t6在时序约束规范时尤其需要关注,它们将在set_output_delay约束中使用。 

图1:时序图和时序特征

两个时钟域解决方案的实现如图2所示。

图2:两个时钟域SPI接口的实现

使用的参数:

输入时钟频率:100 MHZ

内部时钟CLK_120频率:120 MHZ

内部时钟CLK_30频率:30 MHZ

生成的时钟dac_sck:30 MHZ

PLL_120_30

PLL从外部时钟CLK(100 MHz)生成两个内部相位同步时钟CLK_120和CLK_30。dac_sample_gen模块

dac_sample_gen模块为dac_fsm生成采样信号(转换)。采样信号开始向DAC传输数字数据。采样率通过sample_select [1:0]信号设置,如表1所示。dac_sample_gen的框图如图3所示。

表1:采样率设置

图3:dac_sample_gen的框图

mode_select控制信号控制方波信号或三角波信号的生成,作为DAC的输入数据。

sync_stage模块

dac_sample_gen模块与CLK_120一起工作。控制单元dac_fsm是CLK_30域的一部分。sync_stage模块将转换信号从CLK_120域传输到CLK_30域。来自dac_fsm的相应信号从CLK_30域传输到CLK_120。sync_stage的框图如图4所示。

图4:sync_stage的框图dac_fsm模块用于双时钟实现方案

dac_fsm模块控制生成传输到DAC的控制/数据信号。为了遵循图1给出的t4、t5和t6的值,dac_fsm在CLK_30的下降沿工作。Dac_fsm作为状态机实现。 

图5:控制结构dac_fsm状态机转换信号被识别后,bit_count计数器加载值15。串行数据在时钟信号CLK_30的下降沿输出到dac_sdata上。传输16位数据后,dac_fsm再次发出就绪信号并等待下一个转换信号。

约束两个时钟域解决方案的设计

1. 约束时钟CLK2. 约束时钟CLK_120和CLK_30

无需明确定义CLK_120和CLK_30这两个时钟信号,因为它们会由设计软件自动定义。这两个时钟也称为自动生成时钟。3. 约束dac_clk

连接到端口dac_sck的时钟信号是内部时钟CLK_30的副本。该信号被外部DAC解读为时钟。因此,该信号也必须被定义为时钟,便于正确描述t4、t5和t6的时间要求。该时钟即所谓的手动生成时钟。4. 约束DAS输入/FPGA输出

时间值t4、t5和t6描述了外部模块的setup/hold要求。这些要求使用 set_output_delay约束进行描述。

运行两个时钟域解决方案的时序分析

时序分析报告显示了两个时钟信号CLK_120和CLK_30之间的关系。 

 

注意CLK_120和CLK_30的跨时钟域参数,反之亦然。这正是我们所期望的。

对输出信号dac_sync和dac_sdata的分析展示了基于set_output_delay约束实现的setup slack和hold slack。 

总结总之,两个时钟域提供了一些功耗方面的优势,因为设计的一部分以较低的速度运行。此外,时序约束也很容易指定。该项目(dac_2c)可在LEC2索取。

我们将在下一篇文章中探讨单个时钟域的方法。

责编:Amy Wu

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 利用电流互感器作为低成本非侵入式定时触发器 如今,步进电机已广泛应用于工业仪器设备等各类应用中,但步进电机的运动检测是一个问题。本文介绍了电机运动检测的限制,并介绍了一种独特的设计-电感耦合触发电路,可以通过选择合适的磁芯材料来满足各种带宽要求。
  • 如何实现精密低信噪比、低电平信号测量?从锁相放大器 通常来说信噪比越大,夹杂在有效信号中的噪声便越小,可以提取到的有效信号质量就会越好;一般的信号系统信噪比达到 100dB 以上 ,音响系统就可以达到 120-130dB 左右; 而当信噪比在达到 -50 或者 更低至-60dB一下的情况下,提取的信号相对于噪声信号是非常小的,有没有可能检测这种微弱信号呢?
  • TI在 ADAS传感器模块中实现精确的温度和湿度传感 由于这些传感器模块收集的数据与乘客安全直接相关,因此确保它们始终正常工作非常重要。遗憾的是,一个常见的损坏原因就是长时间过热运行或暴露在潮湿环境中。摄像头、雷达和激光雷达中的精确温度传感器有助于延长其寿命并增强安全性和可靠性......
  • 采用外部模拟驱动器提升ADC性能 基于数字处理技术的优点,A/D变换器的使用可以说已经遍及如今形形色色的各类电子系统中。然而,令许多工程师不太理解的一个问题是,既然许多ADC芯片中已经集成了模拟驱动器,为什么还要再采用外部模拟驱动器?本文就这一问题,给出了比较全面且精准的回答。
  • 测试验证串行数字信号总抖动?眼图分析破解之 借由分析眼图可以看出许多系统的性能和问题,例如信号太长或太短、和时脉的同步不佳、信号电压太高或太低、太多噪声、变化太慢、或是有过冲 ( overshoot ) 或下冲(undershoot),都可以在眼图上看出。
  • 浅谈成像雷达的重要性 L3自动驾驶汽车的事故责任主要由汽车厂商而非驾驶员承担。汽车厂商在努力解决满足L3等级的设计复杂性问题,而同时,人们的注意力已经转向过渡性等级,并推进了它的发展进程。
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。
  • 类脑芯片与智能座舱深度融合,时识科 类脑智能与应用解决方案提供商SynSense时识科技宣布与宝马展开技术探索,推进类脑芯片与智能座舱应用场景的深度融合。双方将主要围绕SynSense时识科技基于类脑技术的“感算一体”动态视觉智能SoC——Speck,探索汽车内外相关车载智能应用创新。
  • 美光:智能边缘应用的供应链和汽车架 随着数十亿台设备产生的数据和洞察力不断激增,智能边缘也随之崛起
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了