广告

保护下一代电动车的关键车载充电电路

时间:2022-02-04 05:57:20 作者: Jim Colby,Littelfuse 阅读:
为下一代车辆创新设计电路极具挑战性。新的车辆设计融合了大量复杂的微处理器电路以及最新的电动车(EV)车载充电技术。为了确保目前的新设计可靠和安全,并且能够承受超载、瞬变和静电放电,电子设计人员必须确保其电路具有防止这种损坏的必要组件。
广告

为下一代车辆创新设计电路极具挑战性。新的车辆设计融合了大量复杂的微处理器电路以及最新的电动车(EV)车载充电技术。为了确保目前的新设计可靠和安全,并且能够承受超载、瞬变和静电放电,电子设计人员必须确保其电路具有防止这种损坏的必要组件。本白皮书介绍了车载充电电路的七个关键任务,为电路保护和高效电源控制提供了建议。

 1:电动车的主要电路。

电动车的主要电路概述如上1所示。这张图描述了一种混合动力车,它结合了内燃机和电力驱动。混合动力车对电子工程师而言是最棘手的情况,他们必须开发出足够可靠的电路,以承受内燃机和大功率马达都可能产生的瞬变。

除了保护这些电路免于受到电动车固有的瞬变之外,车载充电器还必须与交流(AC)电源线匹配,因AC电源线可能产生瞬变和超载。车载充电器电路的保护方式应与设计工程师保护任何线路供电产品的方式相同。通信电路也必须得到适当的保护,以确保处理器能承受住任何的ESD瞬变,从而避免数据损坏。除此之外,工程师希望设计此电路以最大限度地减少内部功耗,这有助于尽可能缩短电池充电时间。

车载充电器将AC线路电压转换为主电池组充电所需的直流(DC)电压。电池组的完全充电电压范围为300-500V。今日的电动车消费者想要更快的充电速度。因此,需要包括三相电源在内的更高功率的充电电路。2显示具有单相电路的车载充电器方块图范例。每个电路块都标识了推荐的保护组件,还有根据需要,已达最佳充电器效率的控制组件。

 2:车载充电器方块图。 

输入电压

输入电压部份容易受到瞬变的影响,包括AC线路上的雷击和突波。提供超载保护的保险丝是第一道防线。考虑具有高分断电流额定值和高额定电压的保险丝;这可确保保险丝在最坏的电流超载情况下断开。在保险丝的下游放置一个金属氧化物压敏电阻(MOV)以防止突波瞬变或雷击。MOV 可吸收瞬态能量并协助防止其损坏下游更远的其它电路。如果车载充电器(OBC)使用三相电源,请考虑增加用于相间瞬态保护和相中性瞬态保护的MOV。

为了更进一步保护下游电路,请将双极闸流体(bipolar thyristor)与MOV串联。闸流体的箝位电压非常低,通常在5V左右。闸流体的使用还使设计人员能够选择具有较低隔离电压的MOV。这种组合的好处是降低了下级电路瞬间暴露的峰值瞬态电压。

气体放电管(GDT)提供了第四级的高度电路保护。GDT在火线和中性线与车辆底盘接地之间提供高电阻、电气隔离。GDT 提供了额外的保护力度,以防止雷击干扰引起的快速上升瞬变。 

整流器

电路设计人员可以选择具有足够电流处理能力的整流块闸流体,为快速、高功率充电提供必要的功率。这种技术(过整流二极管)的使用提供了“更软”的启动(更低的突波电流)并减少了功率因子校正模块上的电应力。闸流体还可以安全地吸收可能已经通过输入电压和EMI滤波器级的瞬变突波电流。 

功率因子校正

利用功率因子校正电路提高充电效率,从而降低AC电源线中提取的总功率。使用栅极驱动器和绝缘闸双极晶体管(IGBT)控制电路中的电感量。确保选择具有足够工作电压范围的栅极驱动器来控制IGBT。除此之外,请考虑选择具有高抗闩锁能力和快速上升和下降时间的栅极驱动器,以快速切换 IGBT。快速上升和下降时间与低电源电流相结合,提高了电路的电源效率。请务必选择具有内建 ESD保护功能的栅极驱动器,或添加外部ESD二极管来保护栅极驱动器免受ESD影响。双向或单向 ESD二极管可承受高达30kV的ESD瞬变。 

DC链路

DC链路由电容器组组成,用于稳定大功率DC/DC转换器产生的纹波。考虑到DC链路的大电压瞬变,设计工程师可以利用高电压TVS二极管来保护电容器组。

DC/DC 转换器

DC/DC部份提高输出充电电压并为电池产生充电电流。与功率因子校正电路类似,DC/DC转换器需要强大的栅极驱动器。如果选择的栅极驱动器不包括内部 ESD 保护,请务必添加 ESD 二极管以保护栅极驱动器。添加外部 ESD 二极管并不至于降低栅极驱动器的性能。

确保功率IGBT避免受到电压瞬变的影响非常重要。除了防止外部瞬变外,由于内部寄生电感的L·di/dt 效应,IGBT 还会产生关断开关瞬变。在每个 IGBT 的集电极和栅极之间放置一个 TVS二极管,以消除这种瞬态对IGBT的潜在损坏。TVS二极管提高栅极电压来降低瞬态电流的di/dt。当集电极-发射极电压超过TVS二极管的击穿电压时,电流通过TVS二极管流入栅极以提高其电位。TVS二极管继续导通,直到瞬态消失。“主动箝位”(active clamping)的作用是以TVS二极管作为集电极-栅极回馈组件使IGBT 保持稳定状态。有些IGBT内建主动箝位TVS二极管。请选择该类型的IGBT或在电路中添加TVS 二极管。

输出电压

当马达接通和断开时,或当电流因电缆断裂而瞬间中断时,可能会发生电流超载和车内电压瞬变。因此,输出电压级需要有强大的保护。考虑使用保险丝来防止因电池组或承载电池电压的电缆短路而导致的过电流。MOV或TVS二极管可防止任何潜在的破坏性电压瞬变。

控制单元

充电器的控制单元通过CAN总线与数据网络通信。为避免损坏通信电路和避免数据损坏,请确保提供 ESD和瞬态保护。这种保护可以利用单个组件来实现以节省空间。例如, 3显示了为 CAN 总线讯号线保护而设计的双线 TVS 二极管数组。专为保护通信线路而设计的 TVS 二极管数组具有最小的电容,并且不会降低发送器/接收器 I/O 状态。

 3:用于 CAN 总线线路保护的 TVS二极管数组。

设计工程师遵循这些保护和控制建议,可以确保他们的新车载充电系统将为其电动车驾驶人提供强大、可靠和安全的电路。只要有可能,请记住使用经认证可在危险的汽车环境中使用的AEC-Q合格组件(即AEC-Q101涵盖分离式半导体,AEC-Q200涵盖例如压敏电阻等被动组件)。请务必记住,在选择合适的保护和电源控制组件时,还可以利用制造商的专业知识和丰富的应用知识来获得协助。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 从汽车品牌在俄罗斯的市占率,看谁家遭波及最严重 目前于俄罗斯境内的汽车工厂皆陆续停工,并停止进口车辆,再加上俄罗斯表示若外资企业在此期间选择永久停业或退出市场,则会将其事业收为国有,由于多数品牌在当地设有工厂,现下面临国际局势与企业损失的双重压力。
  • 特斯拉上海工厂停产4天,马斯克疑似得新冠 近日SpaceX和特斯拉(Tesla)首席执行官埃隆·马斯克(Elon Musk)在推特上宣布:疑似他再度感染了新冠病毒。与此次同时,特斯拉上海工厂宣布将停产四天......
  • 目标宏大的激光雷达以及硬件无关的互联汽车平台 蓬勃发展的自动驾驶,催生出了激光雷达和互联网汽车平台。激光雷达的发展现状如何?未来前景又如何?互联网汽车平台的发展趋势又是什么?就这些热点问题,本期精英访谈采访了两位业内专家——Velodyne激光雷达的首席执行官Ted Tewkesbury和常春藤平台开发的高级副总裁Sarah Tatsis。就上述两个主题,他们分别表述了自己的观点。
  • 预计2022年模拟芯片销售额将再迎两位数增长至832亿美 据研究机构预测,继2021年增长30%后,预计2022年模拟芯片将再次实现两位数的增长。数字化带动了芯片用量的增加,将成为带动模拟芯片需求的关键因素。其中通信领域将占最大部分,其次是电源管理IC……
  • TI在 ADAS传感器模块中实现精确的温度和湿度传感 由于这些传感器模块收集的数据与乘客安全直接相关,因此确保它们始终正常工作非常重要。遗憾的是,一个常见的损坏原因就是长时间过热运行或暴露在潮湿环境中。摄像头、雷达和激光雷达中的精确温度传感器有助于延长其寿命并增强安全性和可靠性......
  • 2022,碳化硅半导体元年? 碳化硅凭其优异的高压、大电流和高频特性,使其特别适合于电动汽车动力系统以及其他的高功率密度的各种应用。来自半导体巨头意法半导体和微信科技的专家均预测,新的一年里,碳化硅应用将具爆发潜力。两公司均已推出可商用的模块和参考设计,助力工程师快速开发高压动力系统。
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。
  • 类脑芯片与智能座舱深度融合,时识科 类脑智能与应用解决方案提供商SynSense时识科技宣布与宝马展开技术探索,推进类脑芯片与智能座舱应用场景的深度融合。双方将主要围绕SynSense时识科技基于类脑技术的“感算一体”动态视觉智能SoC——Speck,探索汽车内外相关车载智能应用创新。
  • 美光:智能边缘应用的供应链和汽车架 随着数十亿台设备产生的数据和洞察力不断激增,智能边缘也随之崛起
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了