PCIe是数据中心和客户端应用中使用的主要新兴高性能存储和串行总线,实现了外设之间的数据通信。下图为PCIe 总线传统的典型应用:由于汽车向“信息化、智能化”不断演进,汽车也越来越像移动的数据中心,承载着大量的计算场景,从而PCIe的大量使用也是必不可少,并且速率也在随着芯片算力、消费接口升级而不断提高。

汽车的“信息化、智能化”为汽车行业带来了新的概念,软件定义汽车。它代表着车内软件的数量和价值(包括电子硬件)超过了机械硬件,代表着汽车行业的逐步转型,从高度的电子机械终端到智能、可扩展的移动电子终端并可持续升级。要成为如此智能的终端,汽车必须预先嵌入高级的硬件,而硬件的功能和价值通过整个生命周期中的OTA逐渐激活及增强。行业的价值链将从一站式的硬件销售变成持续的软件和服务优化,而消费者也期望汽车有类似智能手机的行为的客户感受。 因此汽车的电子电气架构 (EEA) 需要从传统的分布式模型向中心化、简介化、可扩展化演进。概括的说, EEA 的演进将通过集成、域中心化及车中心化三步演进,如下图所示: 

图 1. 汽车电子电气架构演进路线

当前车内的电子电气架构以功能型的域集中形式为主,比如将动力域、底盘域、车身域整合为“车控域”; “智能座舱域”将取代原有的信息娱乐域,实现人机交互和T-box集成功能;“自动驾驶域”将负责高级自动驾驶的感知、规划和决策。当然造车的新势力会更进一步的采用域中心化及车中心化的先进架构实现更高级别的自动驾驶能力,实现“跨域融合”。 智能座舱作为与消费者最直接的接触空间,是客户交 互体验差异化的关键,汽车行业中的热点并且不断的加速演进。这也带来了智能座舱在数字仪表、信息娱乐等多个显示域实现 HMI 的无缝连接,并且屏幕的尺寸也越来越大,多模交互、中控多屏以及智能联屏是智能座舱发展的趋势。

如下图所示,参考华为海思的智能座舱框图,典型的座舱域控制其中可能包含了各种各样的显示高速总线,比如GMSL/FPD-LINK/MIPI DSI/CSI 等连接多种屏幕,同时也包含了各种车内互联接口,比如 CAN/ CAN-FD/USB2.0/100BASE-T1 等用于与座舱中各种传感器、音频设备等外设的互联,从而可以通过硬件架构的集中和统一的智能化处理带来更丰富的沉浸式用户体验。

图 2. 智能座舱示意图参考海思

作为设计者要面对下一代高速的视频及外设接口信号完整性,冗余的硬件设计满足消费者的全生命周期迭代升级要求,轻量化及降低线束,以及更低的功耗等等各种挑战。

图 3. 不断推进的分辨率及 SERDES 高速接口

自动驾驶域涉及到感知、决策和执行三个层面,随着汽车智能化水平的不断提高,驱使着自动驾驶算力的不断增加以及融合感知能力的不断增强。这都使得传感器接口数量和带宽都高速增长,涉及到 MIPI DPHY/ CPHY/SERDES/车载以太网等等高速互联接口;以及内部计算接口总线、存储总线、芯片互联总线诸如 PCIe Gen3/4、LPDDR4/5、XFI 等等。这都为硬件工程师带来不断提升的高速信号完整性及电源完整性设计与测试的挑战。 

以下将会对新一代电子电气架构下,智能座舱域及自 动驾驶域内部涉及到的各类高速总线信号完整性及电源完整性测试进行分析和总结,帮助汽车行业工程师们能够应对日益提升的汽车硬件设计域测试要求。

图 4. 自动驾驶域示意图

图 5. 参考 nVidia Orin 计算平台示例

PCIe Gen 2/3/4 测试 

PCIe是数据中心和客户端应用中使用的主要新兴高性能存储和串行总线,实现了外设之间的数据通信。下图为PCIe 总线传统的典型应用:由于汽车向“信息化、智能化”不断演进,汽车也越来越像移动的数据中心,承载着大量的计算场景,从而PCIe的大量使用也是必不可少,并且速率也在随着芯片算力、消费接口升级而不断提高。

图 6. PCIe 典型应用场景

图 7. PCIe 链路层级示意及链路实现方案

与任何串行数据标准一样, PCI Express 可以视作“由多个层组成的堆栈”,堆栈中包括通过传输介质传送电子信号的物理层;把信号解释为有意义的数据的逻 辑层;传输层等等。每个层有相应的标准和一致性测 试程序。而其中PHY 层(物理层)涵盖了两个子层:逻辑层和电气层。PHY的物理部分处理高速串行分组交换和电源管理机制。PHY 的逻辑层处理复位、初始化、编码和解码。电气子模块和逻辑子模块还可能包 括特定标准功能。 

PCI Express 链路由称为通路的双单工传输方案集合组成。每条通路有一个发送和接收差分对,每条通路共有四根走线(以图中的 PCIe x4 链路为例)。 PCIe 标准由PCI-sig组织负责维护,从机械接口来 看有 CEM 等形式,并具备一致性测试要求;而对于芯片到芯片的连接,则有 PCIe 的 Base 规范来进行规定,但是没有一致性要求。其主要的信号特点: 

  1. 采用AC耦合的差分信令传输 
  2. 应用100MHz的参考时钟,既可以是公共时钟也可以是分离时钟 
  3. 总线宽度可扩展,包含x1、x2、x4、x8、x16通路数目 
  4. 可扩展传输速率,包含2.5GT/s (Gen1)、5GT/s (Gen2)、8GT/s (Gen3)、16GT/s(Gen4) 等等 
  5. 多种连接方式,如CEM、U.2、M.2 及 PCB直连等

图 8. PCIe 标准分类

如下图所示,典型的整条高速串行链路由发射机、信道及接收机三部分组成。对于芯片到芯片的PCIe链路,通常标准会定义在发射机引脚进行测试,并满足PCIe Base的规范要求。 由于PCIe芯片中还包含了发射机及接收机均衡以抵抗信道的衰减;所以调试时往往还需要嵌入信道的模型,并模拟PCIe芯片的接收机均衡来评估芯片内部进行均衡后的信号质量。而这些往往都可以在示波器的软件中进行模拟。

图 9. PCIe 典型链路测试示意

PCIe 链路性能列在下面以供参考:

在实际应用中,PCIe 速率是向下兼容,比如 Gen4 的发射机也会兼容 Gen1、2、3 的所有速率和均衡方式,并且通过协商的方式决定最终的链路工作模式;假如我们需要进行所有发射机和接收机均衡的调试和评估,需要非常纷繁复杂的测试手段。 

泰克 PCIe 测试解决方案 

泰克PCIe测试解决方案不仅仅针对PCIe一致性测试,而且也支持PCIe Base测试所需要的测量项目,并且具备优异的三模测试探头、功能完备的串行数据链路分析软件(SDLA)及协议解码功能,可以让我们在PCIe的调试、测试和评估中得心应手。

泰克的 SDLA 串行链路分析软件支持针对发射机、接收机均衡模拟,以及信道的嵌入与去嵌,因而在进行复杂的PCIe链路的模拟中通过一次测试模拟出不同均衡下,针对不同信道模型各个节点的波形进行分析比对。并且 SDLA 支持丰富的信道模型嵌入和去嵌,最大程度提高测试的便利性,比如单端或差分S参数,示波器及探头模型、传输线模型、RLC 模型、传递函数等等:

图 10. 泰克 SDLA 串行链路分析软件

图 11. SDLA 支持丰富的信道模型类型

接收机均衡除了支持自定义CTLE、FFE/DFE均衡设 定外,同时也支持IBIS-AMI模型,真实模拟芯片的均衡能力。

图 12. SDLA 支持 IBIS-AMI 模型

接收机均衡除了支持自定义 CTLE、FFE/DFE 均衡设 定外,同时也支持 IBIS-AMI 模型,真实模拟芯片的均衡能力: 此外,泰克还提供了SignalConnectTM 信道测量建模 功能,方便直接对信道进行测量和生成模型,并方便快捷的导入至SDLA中进行链路分析:

图 13. 泰克 SignalCorrect 信道测试建模功能

在调试与评估中,泰克还提供了SR-PCIe协议解码功能,帮助发现并定位通信链路中可能存在的问题:

图 14. 泰克PCIe协议解码功能,并能实现点击任意符号波形自动跳转到对应位置功能

推荐的示波器的选择如下表:

总体来说,泰克PCIe 解决方案提供完备的软件支持PCIe Base及CEM一致性测试,提供丰富的调试工具如SDLA、SignalCorrect、协议解码等,使得PCIE在芯片到芯片互联的测试与评估更加简单快捷,让产品可以更快投放到市场,从而获得竞争优势。

责编:Luffy
阅读全文,请先
您可能感兴趣
在智慧工厂以及高科技、航空航天和国防领域,5G专网可能是必然解决方案。5G专网中,多路接入边缘计算又是必不可少的技术。围绕5G专网,本文概述分析了网络特点,信道建模方式,入网工业设备的标准验证和一致性测试等必须考虑的关键因素。
在消毒领域,传统UV-C辐射源已有数十年历史;而UV-C LED则是新兴技术,其辐射功率、效率和性价比目前尚有较大差距,但可实现传统辐射源无法实现的新应用,因此未来替代前者已属必然。本文基于性能参数路线及应用效率,对UV-C源的总体拥有成本进行估算,进而预估出新旧技术可替代的时间点。
对于任何批量生产的产品来说,原型设计是至关重要的。产品开发过程中创建和使用原型时,设计团队往往面临诸多选择和权衡。借助完善的仿真工具,可准确预测原型设计及PCB布设和装配后的性能状况,包括信号完整性、电磁兼容性或I/O布线的任何可能性变化;再借助专业公司的设计经验,即可顺利地将产品创意变成现实。
在为AD变换器设计优异的射频前端时,有多种方法,这往往令设计师犹豫不决。本文对如何克服ADC模拟前端接口设计的缺陷提供快速入门指南,并对各种有源接收前端设计方法进行了深入比较,还介绍了新型TRF1208差分放大器。这将有助于设计师作权衡和取舍,并做出明智的选择。
在智慧制造领域日益普及的机器人,可同时提供高效率和高精度。机器人电机位置的监控至关重要。磁性角度传感技术是一种可行的解决方案。本文探讨了该方案中引起误差的各种原因,并提出了多点线性化或谐波逼近误差校准方法。通过校准,可实现极高的电机位置精度。
机器人已经融入到了我们生活的方方面面,现在酒店、餐饮、娱乐、工业、汽车自动驾驶等各个领域都有机器人在为我们服务。机器人越来越智能,应用场景也越来越多。 6月29日,由Aspencore与深圳市新一代信息通信产业集群联合主办的AIOT 2022国际生态发展大会-智慧机器人分论坛上,毕业于中山大学和荷兰代尔夫特理工大学,曾是光刻巨头ASML光刻过程控制算法的创始团队成员,现任深圳阜时科技有限公司CTO王李冬子先生分享了SPAD芯片在机器人LiDAR领域的应用。
由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。

智能手机是目前CIS产品最大的应用市场,其成像系统始终在进行强劲升级。据Counterpoint Research预测,未来每部智能手机的CMOS图像传感器(CIS)含量将平均扩大至4.1。同时更强大的芯片组、成像性能的突破以及软硬件的进步等多因素的综合作用,将不断为手机市场的消费者提供更好的成像体验。
2022年7月18日和19日,人民日报客户端和新华社新华网新华号、羊城晚报、凤凰网等主流媒体,先后转发了宋仕强先生的原创文章《华强北研究》。人民日报客户端文章名称为《宋仕强
01 各组别成绩电磁四轮专科序号学校名称队伍名称最好成绩次好成绩最终成绩1重庆交通职业学院交融世界一队20.16420.57520.3702重庆电子工程职业学院的卢23.97724.34524.161
五分钟了解产业大事1【音视频、信息通信等设备新国标提高设备安全要求】7月27日,市场监管总局召开专题新闻发布会,介绍了《音视频、信息技术和通信技术设备 第 1 部分:安全要求》这一新修订的强制性国家标
2019年,小米率先商用1亿像素传感器,首发机型是CC9 Pro。当时,小米集团中国区总裁卢伟冰预言,高像素方向是对的。随着时间推移,几乎所有主流手机品牌都全部跟进了一亿像素,用时间证明“高像素方向是
本周替代推荐:CA-IS3760LN可替代ADI型号ADUM160N0BRZ7月25日,海关总署发布统计数据,2022 年上半年,我国共进口集成电路 2797 亿块,同比减少 10.4%。但进口总金额
2022年Q2中国智能手机销量创下新低;荣耀逆势而上,销量翻番分析师:  IVAN LAM中国智能手机销量在 2022 年第二季度创下新低,未及2016 年第四季度创下的历史峰值销量的一半。上一次出现
    关注、星标公众号,直达精彩内容文章出处:Qt小罗整理:李肖遥1 需求描述实现USB设备的热插拔状态检测;可识别USB设备信息,例如PID、VID、设备序列号等。几年前在CSDN上分享过,被CS
客户需要轻便、紧凑、强大的适配器为他们所有的重要设备快速充电。在OEM原厂和非原厂供应商竞相为电动工具、电动自行车和移动设备推出最快、最小、最通用的USB PD充电器的背景下,工程师必须掌握关键的优势
随着HarmonyOS 3.0系统的即将到来,关于下一代旗舰手机华为Mate 50系列的传闻也越来越多了。从近期多方消息来看,华为Mate 50系列的设计应该已经定型,很可能会在接下来两个月的时间内发
01前言:PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源 (Switching Mode Power Supplies,简称SMP