在集成光子学的多个方面所获得的进步是否已经足以达到一个“拐点”,在其后的几年里,该技术将迅速过渡到基于这些器件的大面积设计?或者,这会是一个缓慢、稳定、渐进的过程,这些器件及其架构的采用也会以相对缓慢的步调逐步实施?或者,与大规模生产相关的挑战性障碍和问题会阻碍该技术的发展吗?

在过去的十年中,大学和企业在集成光子学方面做出了重大的研究努力,并取得了切实的进展。目标是开发将系统和组件从“电子加光学”转变为两种技术的无缝融合更好的构建块,这两种技术有很多共同点,并表现出物理定律所定义的重大差异。

几个例子显示了进展的范围。在一个用例研究中,著名的瑞士洛桑理工学院(EPFL)的研究人员通过将稀土离子引入集成光子电路,构建了一个小型波导放大器。

自20世纪80年代以来,掺铒光纤放大器(EDFA)被用来为光纤中的光子提供功率增益(图1),以提高光信号功率,这在长距离通信电缆和光纤激光器中至关重要;请记住,光功率是通过增加给定波长下的光子数量来提高的,而不是光子本身的“幅度”。幅度是一个固定量,为波长的函数。使用铒离子是因为它们可以放大1.55毫米波长范围内的光,而硅基光纤传输损耗在该范围内最低。

图1:掺铒光纤放大器示意图。资料来源:RP Photonics

在简单的掺铒光纤放大器示意图中,两个激光二极管(LD)为掺铒光纤提供泵浦功率。泵浦光通过二色光纤耦合器注入,而光隔离器降低了器件对反射光的灵敏度。

有人尝试使用掺铒光波导代替独特的光纤,但功率输出太低,生产问题很难解决。现在,EPFL团队已经构建并测试了一个基于集成电路的铒放大器,该放大器提供145毫瓦的输出功率和超过30分贝的小信号增益,这与商用光纤放大器(基于光子集成电路的掺铒放大器)相当,如图2所示。

图2:波导放大器示意图。资料来源:EPFL

图2所示为EPFL研究人员开发的一种小型波导放大器。设计中,研究人员成功地将稀土离子注入到集成光子电路中。

该器件基于离子注入,采用超低损耗氮化硅(Si3N4)光子集成电路,波导结构尺寸为毫米级,长约50厘米。通过将电光元件集成到一个公共基板上,进一步减小了分立元件的尺寸和数量,这在某种程度上与将分立晶体管和无源元件集成到IC中的方式有些类似。

英特尔的激光阵列

多波长集成光学领域也取得了进展。英特尔实验室展示了一种完全集成在晶片上的八波长分布式反馈(DFB)激光器阵列,该阵列采用该公司的300毫米硅光子学制造工艺。其输出功率均匀性为±0.25dB,波长间隔均匀性为±6.5%,优于行业规范的要求。

这种使用密集波分复用(DWDM)技术的共封装光学器件,提供了大幅提高带宽的潜力,同时显著减小了光子芯片的物理尺寸。然而,迄今为止,生产具有均匀波长间隔和功率的DWDM光源一直非常困难(见图3)。

图3:八波长激光器阵列示意图。资料来源:英特尔

图3所示为八波长激光器阵列,包括八个微环调制器和一个光波导,各微环以均匀的间距调谐到不同的光波长上,且每个微环都可以单独调制。

英特尔的器件结构确保光源的波长相隔一致,同时保持均匀的输出功率,从而满足光计算互连和DWDM通信的要求。英特尔在III-V芯片邦定工艺之前,使用先进的光刻技术来实现硅波导光栅,这与在3英寸或4英寸III-V芯片制造厂中生产的传统半导体激光器相比,可以产生更好的波长均匀性。

此外,由于激光器的紧密集成,当环境温度变化时,阵列能保持其通道间距一致;这始终是光学器件中的一个主要指标,因为温度引起的漂移会破坏基本一致性。

光学芯片

与这些迈向商用的潜在重要节点在实验室取得进展的同时,市场上也出现了一些其他集成光子技术的进展。支持英特尔的Ayar实验室正在提供单片封装光学I/O(OIO)芯片。这些集成硅光子器件基于CMOS工艺制造,采用多芯片封装(MCP)技术。从而消除了电气I/O瓶颈,在对更多更快性能的不懈追求中,提高了功率效率、实现了低延迟和高带宽密度,如图4所示。

图4:不同技术的集成度比较。资料来源:Ayar实验室

图4显示光电集成方法的层次以性能递增的方式给出不同的选项,最顶部的是光子全集成。

上述解决方案将TeraPHY(封装内光学I/O芯片)与SuperNova(多波长光源)相结合,将硅光子学与标准CMOS制造工艺相结合,与电子I/O相比,仅需1/10的功率即可将带宽密度提升高达1000倍(参见图5)。

图5:TeraPHY OIO小芯片构成的高级组件示意图。资料来源:Ayar Labs

图5所示的高级组件中,TeraPHY OIO小芯片(每个小芯片包含多达8个256Gbps光端口)采用倒装芯片连接,使多光端口的封装集成和自动化组装得到简化。

我想知道:在集成光子学的多个方面所获得的进步是否已经足以达到一个“拐点”,在其后的几年里,该技术将迅速过渡到基于这些器件的大面积设计?或者,这会是一个缓慢、稳定、渐进的过程,这些器件及其架构的采用也会以相对缓慢的步调逐步实施?或者,与大规模生产相关的挑战性障碍和问题会阻碍该技术的发展吗?

五到十年后,让我们再回头看看到底产生了什么结果。将今天的预测、推断和预期与届时的现实相比较,这将是一件非常有趣的事情。

(参考原文:Integrated photonics advancing on multiple fronts

本文为《电子工程专辑》2023年1月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅

责编:Jimmy.zhang
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
现代设计要求转换器必须能够提供高功率密度、高功率效率、更好的热管理以及减轻重量和尺寸等多方面的能力。通过顶部与底部冷却封装相比较,本文分析了表面贴装半导体MOSFET在热性能、降低热阻和工作温度方面的差异;并探讨如何通过降低结温来提高功率效率,以及减少总传导损耗和开关损耗,进而提升DC-DC转换效率。
随着移动技术的不断创新,新的数字设备不断涌现,对带宽和数据速率的需求一直都在大幅增长。而目前作为分立电子器件实现方案的可插拔光学器件的功耗和热管理,正在成为支持其提供更高容量方面的严重制约因素。本文所介绍的、作为业界发展趋势的共封装光学器件,是一种旨在克服这些挑战的新解决方案。
高压交流输电一直在电力行业占据主导地位。而如今,随着新技术的进展,高压直流输电开始发挥更大的作用。随着电网越来越多地依赖远距离的多样性源,包括风电、太阳能、甚至是电力储能系统,直流的优势变得更加明显。不过作者认为,高压交流输电并不会退出市场,而是两者将用于各具技术和成本效益的场景。
按照被测器件的封装类型,功率器件动态参数测试系统分为针对分立器件和功率模块两大类。长期以来,针对功率模块的测试系统占据绝大部分市场份额,针对分立器件的测试系统需求较少,选择也很局限。随着我国功率器件国产化进程加快,功率器件厂商和系统应用企业也越来越重视功率器件动态参数测试,特别是针对分立器件的测试系统提出了越来越多的需求。
气候变化的影响与日俱增,同时全球能源需求还在持续快速增长,节能减碳、实现”绿能”刻不容缓。如何有效地从各种再生能源中获取能量,如何提高功率密度,如何监控并最佳化系统状态,使能源得到高效利用?本期聚焦栏目从高效率、高电压、高频率、高功率密度新器件和新技术等多个维度出发,引领读者迈进“绿色”新时代。
基于阻变存储器(RRAM)的存内计算技术是实现nvCIM的有力竞争者。通过将神经网络中的权重矩阵部署到RRAM交叉阵列上,利用欧姆定律和基尔霍夫定律加速矩阵向量乘法计算,可显著降低数据在计算和存储单元之间的搬运,从而增加系统的推理速度和能效。但现有的nvCIM架构在匹配边缘AI系统方面还存在一些挑战……
德州仪器首席执行官Rich Templeton当选SIA副主席
由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
技术先进的CMOS图像传感器供应商思特威,正式推出面向高端智能安防应用的Star Light (SL) Series超星光级系列大靶面8MP图像传感器新品——SC880SL。
移远通信将摩尔斯微电子的业界体积最小、速度最快、功耗最低的IEEE 802.11ah标准SoC集成到新模块中
“机器人”成为两会高频词。文|网络作为“制造业皇冠顶端的明珠”,机器人的研发、制造、应用是衡量一个国家科技创新和高端制造业水平的重要标志。在2023年全国两会期间,代表们也对机器人行业发展提出了一些建
关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯来源:技术邻汽车学习 一、概述智能网联汽车是《中国制造2025》规划中提出的新概念,是智能汽车与互联网相结合
大家有没有接到过“95” "1069" “00”等开头的电话或短信当心诈骗盯上你了!近期,张女士接到一通“00”开头,自称售后客服的短信,称其在某购物平台上购买的化妆品质量不合格,要做退货赔偿。遵照这
关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯来源: 佐思汽车研究 佐思汽研发布《毫米波雷达数据报告-2023年3月版》,报告依据佐思汽研数据库,对当前毫
大家好,公众号【一起学嵌入式】运营有一段时间了。非常感谢大家的关注!公众号创立之初,一直坚持的宗旨是,一起学习,一起成长。希望借此公众号作为嵌入式技术的分享和交流平台,当然也是这样做的。我从学习单片机
关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯来源:  焉知智能汽车未来汽车产品最核心的技术是电子电气架构,汽车电子电气架构由分散式、嵌入式逐渐向集中式、
2023年1月10日,英特尔正式向全球数据中心客户推出第四代英特尔®至强®可扩展处理器(代号“Sapphire Rapids”)。得益于在数据中心领域深耕多年,英特尔成功推出这款具备卓越加速性能的至强
【智能汽车电子与软件】专注于汽车电子领域的信息交融平台,涵盖汽车电子行业资讯、市场动态、技术干货、知识见解、行业趋势等资讯深度覆盖。现邀请您添加智能汽车电子与软件的小编——小璇,获取海量福利。福利1: