现代设计要求转换器必须能够提供高功率密度、高功率效率、更好的热管理以及减轻重量和尺寸等多方面的能力。通过顶部与底部冷却封装相比较,本文分析了表面贴装半导体MOSFET在热性能、降低热阻和工作温度方面的差异;并探讨如何通过降低结温来提高功率效率,以及减少总传导损耗和开关损耗,进而提升DC-DC转换效率。

为响应电力生产和管理方式的变化,电力转换产品市场正在迅速现代化。此外,电力正在增加,以满足各种不同特性和要求的巨大和快速扩展的负载。这种现代化正在推动所有阶段的功率转换器的重新设计,以满足提高功率密度和功率效率、更好的热管理以及减轻重量和尺寸的需求。在某些情况下,转换器需要实现双向性。

DC/DC转换器概述

功率转换器的DC/DC是电源的关键组成部分,它将输入的恒定直流电压转换成受控的DC输出电压,而输出电压值可以高于或低于输入电压,具体取决于转换器是降压转换器还是升压转换器。DC/DC转换器可以是具有固定输入级和输出级的单向转换器,也可以是输入和输出可互换的双向转换器。

(a) 

(b)

(c)  

(d)

图1:DC-DC转换器拓扑架构(a. 单向半桥LCC;b. 全桥相移单向转换器;c. 双路有源桥组成的双向转换器;d. CLLLC,双向转换器)。

图1中这些不同的拓扑结构却有一个共同特点,即:接通时均采用零电压开关(ZVS)操作,目的是减少开关损耗。

底部和顶部冷却的SMD封装

像MOSFET和IGBT这类功率器件,包括普通半导体以及宽带隙碳化硅(SiC)和氮化镓(GaN) 器件,所采用的封装都要抗湿度和外部污染、并确保电气隔离。

与通孔安装相比,现在的市场趋势是表面贴装(SMD),因为其具有:

     ●更紧凑的解决方案,安装高度更低

     ●良好的热性能

     ●更高的功率密度

表面贴装封装可分为:

     ●底部冷却式(如D2PAK和TO-LL)封装:通过底部引线框架散掉半导体管芯产生的热量。这些封装利用PCB作为散热片,并连接到板中的铜块和/或通孔。

     ●顶部冷却式(如HU3PAK)封装:通过顶部引线框架连接到位于封装顶部的特定散热片,对半导体管芯产生的热量进行散热。

本文在相同工作和热系统条件下,对图2中的HU3PAK顶部冷却与D2PAK和TO-LL底部冷却的热性能进行了比较。

  

图2:3款不同封装示意图(左:D2PAK,中:TO-LL,右:HU3PAK)

表1:PCB上不同封装尺寸及占位面积。

功耗分析

表2给出了方程[1-4]和由此所得到的初步功耗,为SMD封装的热建模和分析提供了输入数据。测试载体为3kW全桥LLC转换器。从方程1、2、3和4开始,在最大功率(3kW)的10%、20%、50%、75%和100%这五个负载点上评估初级MOSFET损耗,具体数据见表2。

表2:不同负载点的MOSFET功耗数据。

从表2中可见,不同负载点的开关损耗、驱动器损耗和二极管损耗相同,这是因为功耗模型都是在谐振频率上进行计算所致。

功耗的第一次分析有助于根据结温(Tj)找出半导体的工作点。D2PAK、TO-LL和HU3PAK三种不同封装内的器件是相同的。器件在25°C时RDS(on)等于80 mΩ。

由于封装的结对环境热阻(RthJA)值不同,热分析发现所有三个封装的结温不同。

因此,不同的结温会影响RDS(on)和栅极阈值电压(VGSth)。

图3:RDS(on)行为与Tj的关系。该曲线代表热倍增因子。

图4:VGSth 性能与Tj的关系。

Tj对RDS(on)的影响远大于对VGSth的影响。因此,仅根据Tj值和不同的RDS(on)值计算传导损耗。表3给出了三种不同软件包的RDS(on)乘法系数。

表3:考虑RDS(on)增加后的热系数与Tj的关系。

表4:不同RDS(on)值下三种封装的传导损耗。

HU3PAK的测试结果证实,当其功率与其他封装相同时,其顶部的冷却封装维持了较低的结温。因此,消耗更少的功率,提高了总功率效率(因为RDS(on)随结温升高而增加(见图3)。因此,确保较低结温Tj的更高热效率封装,有助于将功耗减到最小)。

热仿真分析

本文重点介绍为验证顶部冷却解决方案而进行的热仿真,仿真采用的是数值有限元方法。该方法根据连接到印刷电路板(PCB)的热接口材料(TIM),可以评估封装内功率MOSFET的热行为。仿真中使用的功耗数据来自本文前面所示的实际操作条件(轻载和满载时的DC/DC转换器)。

针对三种封装解决方案,进行了仿真基准测试:D2PAK和TO-LL为底部冷却,HU3PAK为顶部冷却。第一次评估是在稳定状态下进行的。仿真中使用的散热片相同,在D2PAK和TO-LL封装中,散热片放置在PCB热通孔的底部,而在HU3PAK封装中直接放置在顶部裸露的铜框架上。

此外,对于所有物理模型,仿真中采用相同的、有热通孔的2层PCB(铜箔厚度为2盎司),相同的TIM和边界条件(Tamb=25°C,散热表面上的导热系数(Htc)=750 W/m2K)。

  

图5:三款不同封装的仿真几何结构、PCB和底部散热的轴测图和侧视图。(左:TO-LL;中:D2PAK;右:HU3PAK)

表5给出了为预测三款封装器件在10%、20%、50%、75%和100%负载上Tjmax的首次仿真结果。表5所示的结果证实,TO-LL和D2PAK的性能相当,而HU3PAK的温度更低,且在满载时温差更明显。

表5:不同负荷下三款封装器件的Tj max(每款器件功耗相同)。

参考表4中更新的传导损耗,对每款器件进行热仿真。图7所示为TO-LL、D2PAK和HU3PAK满载时的仿真热图。

表6:不同负载百分比上每款封装的Tjmax(每款封装的功耗不同)。

图:6:不同百分比负载下的温度比较。

图7:TO-LL(a)、D2PAK(b)和HU3PAK(c)稳态热图。

结果表明,D2PAK和TO-LL的热性能相当,而HU3PAK在相同负载点上温度较低。

正如预期的那样,HU3PAK更好的热性能主要源于顶部冷却。优异的热性能在满载时最为明显。

最后,通过提取每款封装的Rth j-amb,也证实HU3PAK的性能优于其他两款封装。

图 8: D2PAK, TO-LL 和 HU3PAK封装的 RthJA。

模型验证

最后,通过将仿真和测量结果进行比较,来验证模型,如图9所示。图9中所示器件为TO-LL封装。安装在与之前进行的仿真所用相同的PCB上,所得结果如表7所示。

关于边界条件,考虑了PCB底部的绝热,封装和PCB顶部表面的导热系数(Htc)为11W/m2K。

表7:TO-LL封装的Tj max测量值和仿真结果。

表7 中的结果显示,该模型的验证误差小于1.5%,表明仿真和实际测量之间的良好一致性。

图9:用于模型验证的TO-LL封装的热仿真。

结论

与D2PAK和TO-LL等其他SMD封装相比,HU3PAK封装具有顶部冷却能力,从而显示出许多优势,当所采用的散热尺寸和PCB热特性(铜重量) 相同时,由于其散热能力提高,从而支持更大的功率密度。

结果如图表所示,与D2PAK和TO-LL中所用更常见的底部冷却方法相比,HU3PAK将Rthj-amb降低了18%。

此外还需注意到,对于上述所讨论的所有三款封装,仿真时所采用的冷却系统均相同。然而实际上,通过对冷却系统进行优化,还可以进一步提高HU3PAK的热性能。

(参考原文:How to improve efficiency of DC-DC converters

本文为《电子工程专辑》2023年3月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅

责编:Jimmy.zhang
阅读全文,请先
您可能感兴趣
在近日召开的全国两会上,“节能降碳”、“绿色低碳”成为代表委员热议的高频关键词,包括减污降碳协同、绿色金融、生态产品价值、碳市场建设、碳汇等关键词在提案中不断出现。政府工作报告对今年重点工作任务的建议中提出要“推动发展方式绿色转型”,“稳步推进节能降碳”。
英飞凌科技股份公司和氮化镓系统公司(GaN Systems)联合宣布,双方已签署最终协议。根据该协议,英飞凌将斥资 8.3 亿美元收购氮化镓系统公司......
尽管特斯拉作出了减少碳化硅的声明,但不会影响到未来碳化硅技术在各大领域的应用。从新能源汽车领域来看,碳化硅技术仍然是炙手可热的技术。特斯拉的声明并不能代表碳化硅行业或技术的未来,值得关注但仅作参考。
罗姆认为,功率元器件产品的销售额2021-2025年能够达成25%的年复合增长率,其中尤以SiC产品为主。单就SiC市场,公司销售目标是在2025年度大于1100亿日元的销售额。预计2024-2026三个年度,有近9000亿日元的市场待开拓。为了实现这样的目标,罗姆正不断进行SiC方面的投资。预计2021-2025这五年投入1700-2200亿日元。
交易中心的建设,在助力企业数字化转型、推动企业高质量发展、服务高端高质高新的现代产业体系等方面发挥积极作用,对促进产业链供应链降本增效、着力提升产业链供应链韧性和安全水平具有里程碑意义,有望加速国内超大规模市场的资源禀赋优势向全球市场竞争优势转换、为新一轮科技革命提供重要支撑。
Wolfspeed宣布计划将在德国萨尔州建造一座高度自动化、采用前沿技术的 200mm 晶圆制造工厂。据消息称,这座工厂预计斥资30亿美元,预计在获得欧盟委员会批准之后,工厂建设预计可于 2023 年上半年启动。
语音是人类交流的重要方式,但说话人的健康状态(例如神经疾病、癌症、外伤等原因导致的声音障碍)和周围环境(噪音干扰、传播介质)往往会影响声音的传输和识别。研究人员一直在改进语音识别和交互技术以应对微弱的声源或嘈杂的环境。多通道声学传感器可以显著提高声音识别的精度,但会导致更大的设备体积……
随着技术的进步与完善,智能手表的功能日益丰富,在健康监测、运动健身、信息处理、通讯和定位等方面实现了功能加持,与此同时,智能手表的科技感和高颜值为它带来了作为时尚单品使用的又一价值。一是为健康,二是为便利,或者我们也可称之为智能化,附加一个时尚搭配的需求,在手机销量持续走低的今天,全球智能手表市场依然呈现一个增长态势,智能手表成为了数码市场的新宠儿。
在 600 / 750V 这一层次电压功率 FETs 类别中,Qorvo 第四代 (Gen 4) SiC FETs 产品的主要性能:比如导通电阻和输出电容方面领先业界。此外,在 TOLL 封装中,Qorvo 的器件具有最低 5.4 mΩ 的导通电阻,比目前市场同类产品中最好的 Si MOSFETs、SiC MOSFETs 和 GaN 晶体管的导通阻抗还要低上 4-10 倍。
从零到一 如何构建一款先进的数字仿真器
阿里巴巴创始人马云:“下一个暴利风口来了,将造就大批富翁,抓住就能致富!▼看看身边成功的朋友,看看富豪榜排前十的人,皆因看准风口而富甲一方!●15年前,供几套房,一辈子不愁吃穿;●10年前,开淘宝店,
芯片封装目前逐渐向小型化、多引脚、高集成的方向持续发展,异构集成、2.5D、3D、SIP技术让芯片封装结构更加集成且复杂化。作为后摩尔时代芯片性能提升最佳途径,以Flip-chip等为代表的先进封装技
阿里巴巴创始人马云:“下一个暴利风口来了,将造就大批富翁,抓住就能致富!看看朋友圈那些有钱人,几乎都是因为踩对了风口,赚得盆满钵满:15年前,咬咬牙供几套房,一辈子不愁吃穿;5年前,好好经营几个抖音号
一共模与差模的区别电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子
 2023·03·21JM Insights 导读:北京京东方显示技术有限公司在学术期刊《电力与电子技术》上发表了一篇综述,充分调研和阐述了 Mini LED 背光源显示屏及其在 LCD 模组产品中的
邀请函峰会背景‍‍‍‍‍‍‍2022 年,受通货膨胀、地缘政治、疫情反复等不确定外部因素影响,消费电子市场低迷,但是 Mini/Micro LED 应用市场却保持逆势成长,持续成为抵御行业下行的强劲动
点击上面↑“电动知家”关注,记得加“星标”!电动知家消息,3月20日,长安汽车披露了投资者关系活动记录表。内容显示,长安汽车正筹备建设全球区域总部,并推进设立东盟基地,其产品将辐射澳新、南非等市场;同
根据网络信息汇总,如有疑问或错误,烦请指出。芯片超人花姐粉丝福利扫码加好友领取100G半导体产业资料包(内含汽车芯片、芯片设计等文字视频资料)聊行情、买卖芯片、谈合作扫码添加芯片超人花姐推荐阅读:▶ 
汽车行业的跳槽热浪过去了一波之后,平静的朋友圈被一个前同事的咨询打破了。这哥们也是资深BMS软件开发工程师了,前两年混迹了一圈各大主机厂,从传统自主品牌跳到合资品牌再跳到头部新势力企业,拿捏得了算法、
点击上面↑“电动知家”关注,记得加“星标”!电动知家消息,近日,对于有投资者询问亿纬锂能动力电池业务在裁员一事,亿纬锂能在互动易平台回应称,网上传闻不属实。公司的动力电池业务目前仍处于快速发展阶段,总