“常规磁子强耦合态依赖于谐振腔才能构建,当谐振腔换成开放器件,众所周知强耦合特征会悉数消失。我们则摆脱了这一依赖,通过外加微波诱导,即可产生磁子强耦合态。利用这个原理,光频梳在原子钟、超灵敏探测中展现了令人惊叹的精度。我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测我们的频率梳必然能在这些领域中发挥作用。”

从上海科技大学官网获悉,近日上海科技大学物质科学与技术学院陆卫教授课题组在光子-磁子相互作用及强耦合调控方向取得重要进展。研究团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态,此项发现为磁子电子学和量子磁学的研究打开了全新的维度。研究中揭示的新型磁子强耦合物态,能极大改变铁磁单晶的电磁特性,为光子与磁子的纠缠提供新的思路,这对推动磁子在微波工程和量子信息处理中的应用具有重要作用。该成果发表于物理学领域旗舰期刊《物理评论快报》(Physical Review Letters

芯片的研发主要遵循着摩尔定律,即每18个月到两年间,芯片的性能会翻一倍。然而,随着人类社会逐渐步入后摩尔时代,一味降低芯片制程受到了“极限挑战”。处理器性能翻倍的时间延长,“狂飙”的发展势头遇到了技术瓶颈。在市场需求驱动下,人们迫切需要“新鲜血液”的注入,来激活低功耗、高集成化、高信息密度信息处理载体的出路。基于磁性材料发展建立的自旋电子学以及磁子电子学发展迅猛,为突破上述限制提供了出路。

宏观磁性的起源主要是材料中未配对的电子。电子有两个众所周知的基本属性:电荷与自旋。前者是所有电子器件操控的对象。利用电子电荷属性发展的微电子器件,已经引发了信息产业的革命。然而,面对难以抑制的欧姆损耗,以及信息产业对更高密度存储和先进量子计算的渴求,人们迫切希望进一步利用电子自旋作为信息载体,发展自旋电子学器件,进而继续推动信息技术的发展。尤其是磁性绝缘体中的自旋,它们能够完全避免传导电子的欧姆损失,充分发挥自旋长寿命、低耗散的优势,因此对于开发自旋电子学器件意义重大。磁子态是电子自旋应用中的核心概念,它是磁性材料中的自旋集体激发。它不仅可以高效传递自旋流,还可以与不同的物理体系,例如声子、光子、电子等,发生相互作用,进而重塑材料的声光电磁等物性。此外,磁子还可以与超导量子比特相互作用,在量子信息技术中发挥重要作用。正是由于这些性质与应用潜力,近年来关于磁子的研究引起国际学界的高度关注,磁子电子学、量子磁电子学等新兴领域相继诞生。

铁磁绝缘体单晶球中的磁子态,最早于1956年由美国物理学家Robert L. White和Irvin H. Slot Jr.在实验中发现。根据他们的实验结果,同一年L. R. Walker给出了磁性块体空间受限磁子态的数学描述,称为Walker modes。在随后长达70年中,块体磁性材料中研究的磁子态几乎都属于Walker modes范畴。陆卫教授团队的发现突破了这一范畴,发掘了新的磁子态。在低磁场下,铁磁绝缘体单晶球在受到强微波激励时,内部的非饱和自旋会获得一定的协同性,产生一个与微波激励信号同频率振荡的自旋波(图(a)),该自旋波可被称为“光诱导磁子态(pump-induced magnon mode, PIM)”。光诱导磁子态如同一种“暗”态,无法按传统探测方法直接观测,但可通过其与Walker modes强耦合产生的能级劈裂被间接观察到(图(b))。光诱导磁子态的有效自旋数受激励微波调控,因此当改变激励微波的功率时,耦合劈裂的大小会按照功率四分之一次方的关系变化(图(c)),展现出和常规Autler-Townes劈裂不一样的功率依赖关系。此外,研究团队还发现光诱导磁子态具有丰富的非线性,这种非线性会产生一种磁子频率梳(图(d))。相较于微波谐振电路中产生的频率梳,这一绝缘体中产生的新型频率梳不存在电子噪声,因此有望在信息技术中实现超低噪声的信号转换。

图(a)光诱导磁子态原理示意图,(b)光诱导磁子态的强耦合色散图,(c)强耦合劈裂随微波激励功率的幂次关系,(d)光诱导磁子非线性效应引发的纯磁子频率梳

“常规磁子强耦合态依赖于谐振腔才能构建,当谐振腔换成开放器件,众所周知强耦合特征会悉数消失。我们则摆脱了这一依赖,通过外加微波诱导,即可产生磁子强耦合态。这样的开放边界下的耦合态有望像乐高一样有序组合,获得丰富的功能性。”团队负责人陆卫教授表示,“频率梳就像是一把游标卡尺,能够精准的测量频谱上的风吹草动。利用这个原理,光频梳在原子钟、超灵敏探测中展现了令人惊叹的精度。我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测我们的频率梳必然能在这些领域中发挥作用。”(本文参考上海科技大学官网综合报道)

责编:Jimmy.zhang
阅读全文,请先
您可能感兴趣
由于全球半导体业务出现回调,内存更是处于重灾区,在连续数月下跌之后,今年第一季度韩国两大内存厂商三星和海力士的库存大幅增长,营收或均出现较大亏损,据分析预测,整个2023年的内存营收也将出现较大幅下滑。根据世界半导体贸易统计,2022年全球内存市场价值将下降12.6%,2023年将下降17%,2023年或将出现四年来半导体市场首次下降。
沸沸扬扬的美国罗切斯特大学的物理学家Ranga Dias及其团队在2023年美国物理会议上报告的镥-氮-氢(Lu-N-H)材料“21℃室温超导”论文,在经历了多重复刻,在8天左右被被南京大学物理学系教授闻海虎团队公布推翻。
台积电创始人张忠谋在台湾《天下》杂志举办的访谈中,首次对外明确表态,支持美国减慢中国大陆的芯片产业发展政策......
3月20日,据央视新闻报道,中央纪委国家监委对紫光集团有限公司原董事长赵伟国涉嫌职务犯罪问题进行了立案调查。
尽管日本在重振半导体产业上拥有坚实的基础,但半导体人才正成为日本半导体产业发展的掣肘因素之一。不过,解决半导体人才缺口的长久之道自然是培养本土的技术人才。而日本政府此次的海外人才学习计划也是着眼于长远的发展目标。
从高位需求到快速坠落,这是IC行业多年来前所未见的。根据富昌电子数据,海外 MCU 厂商当前大部分产品货期维稳或缩短,汽车 MCU 货期部份紧缺,价格趋势维稳或上涨。2023年Q1会是MCU衰退的谷底,并在2023年的Q2-Q3回升?
语音是人类交流的重要方式,但说话人的健康状态(例如神经疾病、癌症、外伤等原因导致的声音障碍)和周围环境(噪音干扰、传播介质)往往会影响声音的传输和识别。研究人员一直在改进语音识别和交互技术以应对微弱的声源或嘈杂的环境。多通道声学传感器可以显著提高声音识别的精度,但会导致更大的设备体积……
随着技术的进步与完善,智能手表的功能日益丰富,在健康监测、运动健身、信息处理、通讯和定位等方面实现了功能加持,与此同时,智能手表的科技感和高颜值为它带来了作为时尚单品使用的又一价值。一是为健康,二是为便利,或者我们也可称之为智能化,附加一个时尚搭配的需求,在手机销量持续走低的今天,全球智能手表市场依然呈现一个增长态势,智能手表成为了数码市场的新宠儿。
在 600 / 750V 这一层次电压功率 FETs 类别中,Qorvo 第四代 (Gen 4) SiC FETs 产品的主要性能:比如导通电阻和输出电容方面领先业界。此外,在 TOLL 封装中,Qorvo 的器件具有最低 5.4 mΩ 的导通电阻,比目前市场同类产品中最好的 Si MOSFETs、SiC MOSFETs 和 GaN 晶体管的导通阻抗还要低上 4-10 倍。
从零到一 如何构建一款先进的数字仿真器
点击上面↑“电动知家”关注,记得加“星标”!电动知家消息,美国电动车制造商马伦科技(Mullen Automotive) 今天宣布,它已重新获得前途K50在北美和南美的知识产权和经销权。此后,该公司将
阿里巴巴创始人马云:“下一个暴利风口来了,将造就大批富翁,抓住就能致富!看看朋友圈那些有钱人,几乎都是因为踩对了风口,赚得盆满钵满:15年前,咬咬牙供几套房,一辈子不愁吃穿;5年前,好好经营几个抖音号
一共模与差模的区别电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子
点击上面↑“电动知家”关注,记得加“星标”!电动知家消息,3月20日,长安汽车披露了投资者关系活动记录表。内容显示,长安汽车正筹备建设全球区域总部,并推进设立东盟基地,其产品将辐射澳新、南非等市场;同
阿里巴巴创始人马云:“下一个暴利风口来了,将造就大批富翁,抓住就能致富!▼看看身边成功的朋友,看看富豪榜排前十的人,皆因看准风口而富甲一方!●15年前,供几套房,一辈子不愁吃穿;●10年前,开淘宝店,
3月18日,在广州市南沙区珠江工业园内,一座以电子纸为核心的现代化科技园——奥翼科技园正式开业。该园区由广州奥翼电子科技股份有限公司投资建设,建筑面积约7万平方米。奥翼创始人、总经理陈宇表示,奥翼将以
汽车行业的跳槽热浪过去了一波之后,平静的朋友圈被一个前同事的咨询打破了。这哥们也是资深BMS软件开发工程师了,前两年混迹了一圈各大主机厂,从传统自主品牌跳到合资品牌再跳到头部新势力企业,拿捏得了算法、
贞光科技从车规微处理器MCU、功率器件、电源管理芯片、信号处理芯片、存储芯片、二、三极管、光耦、晶振、阻容感等汽车电子元器件为客户提供全产业链供应解决方案! *免责声明:本文由作者原创
华为 P50 Pocket、三星 Galaxy Z Flip4、小米 MIX Fold2,这3款折叠屏手机算是较为热门的折叠屏产品了,那么,三款价位相近的折叠屏手机,有什么区别呢?一起来看看...虽然
广告分割线一季度是全年经济的“风向标”,江苏省邳州市各半导体企业开启“奋进模式”铆足干劲赶订单、保生产抢市场、扩产能,不断跑出经济发展“加速度”,全力冲刺“开门红”。抢占市场 订单红火企业满产达效半导