广告

超宽带(UWB)技术基础及其测试方法

时间:2021-01-14 阅读:
超宽带(UWB)技术是一种利用纳秒级的窄脉冲进行数据传输的无线通信技术。它既不同于传统的窄带通信技术,也不同于广泛用于宽带通信的OFDM技术,UWB信号的超大带宽和极低功率对测试方法和测试仪表提出了新的需求和挑战
广告

基于IEEE 802.15.4a/f/z标准的UWB(Ultra-wideband)超宽带技术是一种利用纳秒级的窄脉冲进行数据传输的无线通信技术。UWB技术可实现厘米级别的精准位置测量,提供速率高达27 Mbps的安全数据通信,且功耗和延迟非常低,而极高的带宽和极低的功率谱密度可以使其与其他窄带和宽带无线通信系统共享频谱且具备一定的抗干扰性。既不同于传统的窄带通信技术,也不同于广泛用于宽带通信的OFDM技术,UWB信号的超大带宽和极低功率对测试方法和测试仪表提出了新的需求和挑战。

如今,UWB技术发展迅速,已经进入消费市场和工业市场,主要针对手机终端、汽车应用、物联网及工业4.0等领域,包括室内定位、移动数据共享、安全支付、资产跟踪、车载定位、无钥匙进入、智能家居和智能工厂等典型用例。

UWB定义与标准

参考FCC的定义,满足10 dB带宽(fH - fL) > 500 MHz或者分数带宽2*( fH - fL)/ (fH + fL) > 0.2的信号可以称为UWB超宽带信号(图1),且信号的功率谱密度限制于-41.3 dBm/MHz。

图 1: UWB信号定义

2002年,FCC允许在非授权频段使用UWB系统用于雷达、公共安全和数据通信的应用。2005年,WiMedia联盟发布了第一个商用UWB标准ECMA-368。2007年至今,UWB技术主要在IEEE 802.15.4标准工作组进行演进。最新的IEEE 802.15.4z标准定义了LRP(Low Rate Pulse)和HRP(High Rate Pulse)两种UWB物理层规范,其中HRP UWB的应用最为广泛。

目前,UWB联盟、FiRa联盟和车联网联盟都是推动UWB发展的重要组织。

HRP UWB物理层技术

HRP UWB定义了Sub GHz频段、Low Band频段和High Band频段三个频段(表1)。每个频段包含一个强制支持的信道及其他多个可选支持的信道,其中信道4、7、11和15这四个可选信道支持更大的带宽(> 1 GHz),而其余信道的带宽均为499.2 MHz。

表1:HRP UWB频段和信道分配

HRP UWB PHY帧(PPDU)由前导和数据两部分组成(图2)。前导部分包含同步头(SHR),由同步字段(SYNC)和帧开始分隔符字段(SFD)组成。数据部分包含PHY头(PHR)和PHY有效载荷。

图 2:HRP UWB PHY帧结构

前导部分的调制采用三元码方式。前导符号Si由三元码序列Ci = {-1, 0, 1}组成,在码符号间插入若干个码片持续时间(图3)。HRP UWB支持的编码序列长度有IEEE 802.15.4-2015定义的31和127,以及IEEE 802.15.4z增加的91。码片持续时间也称为Delta Length,由编码序列长度和信道号决定。

图 3:前导符号的结构

数据部分的调制结合了突发位置调制(Burst Position Modulation)和二进制相移键控(BPSK),称为BPM-BPSK调制方式(图4)。每个符号由一个突发脉冲组成,包含2比特信息。其中一个比特用来决定突发脉冲的位置,另一个比特决定脉冲调制的相位。标准定义了多种突发脉冲长度来支持多种数据速率。

图 4:BPM-BPSK调制方式

UWB定位的基本原理是利用TOF(Time of Flight)进行精确测距。在TOF的基础上,采用改进算法,例如TDOA(到达时间差定位),TOA(到达时间定位),TWR(双向测距),AOA(到达角定位),可以对定位性能进一步提升,适应不同的应用场合。

图 5:TOF测距法

UWB测试项目与方法

UWB测试项目主要来源于802.15.4-2015规范,在协议第16章HRP UWB PHY第四部分中,描述了RF方面的测试要求。主要包括如下的用例 :

1) 16.4.5 Baseband impulse response (脉冲响应)

2) 16.4.6 Transmit PSD mask(发射频谱模版)

3) 16.4.7 Chip rate clock and chip carrier alignment(码片误差)

4) 16.4.10 Transmit center frequency tolerance (中心频率误差)

5) 16.4.11 Receiver maximum input level of desired signal(接收机电平)

针对以上的测试用例需求,罗德与施瓦茨公司提供了一系列的测试方案。以上用例的测试均在R&S CMP200非信令综测仪上实现。

在使用R&S CMP200进行射频测试的过程中,发射机测试是通过外部PC软件控制终端发射指定的UWB信号,在固定的频段以及固定的数据格式,R&S CMP200会测量终端发射出来的信号射频指标。接收机测试时R&S CMP200内置的信号发生器,发送指定格式数据包,终端工作在接收机状态,然后汇报接收到的数据包数目以及误包率。

同时,R&S CMP200的测量在满足协议测试要求的基础上,还额外增加了一些信号分析内容,满足研发客户进一步需求。例如如下用例:

1) Chip/Symbol Clock Jitter Analysis

2) Chip/Symbol Phase Jitter Analysis

3) Chip/Symbol EVM

4) Preamble/Data Power

5) Power vs Time

通过以上测试,可以有效的保证UWB模块射频信号质量,改善UWB数据传输性能。

本文由罗德与施瓦茨供稿罗德与施瓦茨供稿

责编:Amy Guan

本文为《电子工程专辑》2021年1月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅  

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 利用仿真技术改善EV电力电子设计 不同的电动汽车都有一个共同点就是采用电力电子设备来控制和转换系统中的电能,而其电力电子测试面临全新的挑战。为实现高速闭环仿真,就需要摒弃传统基于CPU的系统,转向基于FPGA的方法来模拟电力电子设备和电机。
  • 提升电池性能,量子技术也能帮大忙! 由英国萨赛克斯大学(University of Sussex)研究人员领军的一个项目,正利用以量子为基础的传感器来量测电池行为,期望所取得的数据能为电池技术带来改善。
  • ICCAD 2020:从设计到流片封测,半导体服务趋向专业细分化 IC封测业是中国国内整个半导体产业中发展最早的,随着国家大基金一、二期的陆续投入,中国半导体产业正在飞速发展,封测板块的价值将得到更大提升,一些本土厂商规模已不输国际大厂。此外,基于近年来大量涌现的Fabless公司,国内专注于服务这些公司的平台也逐渐成熟,包含了从人才培养、芯片设计,直到流片封装测试等专业服务,让芯片公司专注自己的设计……
  • 设计开关电源之前,必做的分析模拟和实验(之二) 环路控制是开关电源设计的一个重要部分。文章综述了目前可供选择的一些工具,让您在开始生产开关电源之前能够计算、模拟和测量您的原型,从而确保生产工作安全顺利。本文将主要讨论获取功率级动态响应和选择交越频率和相位裕度。
  • CMOS传感器在3D视觉、感测和度量中的应用 工厂已进入自动化工作,以提高产能和在产品查验和库存的方方面面节省时间和金钱。要优化这些因素,拥有视觉系统的机器需要更高速和以更佳性能工作。因应这些发展,2D视觉遇上了限制,使得3D视觉被广泛引进,以实施更高精度的质量检验,反向工程或物件量度任务。三角测量技术正在这些应用中获大量使用,鉴于三轴图像要求高分辨率,需要非常高速的的传感器。
  • 汇聚新能源汽车半导体技术和产业专家的“中国国际汽车 本次高峰论坛邀请了来自特斯拉、博世汽车电子和蔚来等汽车厂商及Tier 1零部件供应商;恩智浦、安森美、高通、Isabellenhuette和Power Integrations等国际汽车半导体厂商;以及豪威集团、地平线和安世半导体等国内汽车半导体厂商的技术和应用专家,与500多位汽车电子行业人士共同探讨新能源汽车的发展趋势,以及汽车电子的设计、供应链、测试及质量控制等热门话题。
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了