如今,先进的单频带GNSS接收器能够在开阔的天空条件下满足V2X、ADAS和自动驾驶的高精度要求。为了能在各类环境中可靠地服务,GNSS接收机需要克服在城市和其它挑战性的环境中的局限性。本文演示了如何使用基于GNSS校正服务和车辆动态模型的多波段RTK惯性导航系统实现这一目标。

如今,先进的单频带GNSS接收器能够在开阔的天空条件下满足V2X、ADAS和自动驾驶的高精度要求。为了能在各类环境中可靠地服务,GNSS接收机需要克服在城市和其它挑战性的环境中的局限性。本文演示了如何使用基于GNSS校正服务和车辆动态模型的多波段RTK惯性导航系统实现这一目标。

不管是在V2X应用,还是在包括自动驾驶在内的先进驾驶辅助系统(ADAS)中,基于卫星的定位都发挥着独一无二的作用。它是能够实时确定车辆绝对位置的唯一技术。它独立于地图、摄像头和地标。由于其基本工作原理与自动驾驶车辆中使用的其他传感技术(如激光雷达、摄像头、超声波)完全无关,因此基于卫星的定位可为多传感器网络提供其他任何技术都无法给予的重要基础和支持。

如今,全球导航卫星系统(GNSS)接收器技术正不断克服其局限性。精度提升至几十厘米,收敛时间(接收器在信号中断和随后重新获取后达到预定精度水平所需的时间)提升至几秒钟。延迟(从测量位置到设备将此位置报告给网络之间的时间)大约为10毫秒。位置更新频率也能做到10Hz以上。此外,通过更多技术改进,在城市峡谷、多层道路和其他具有挑战性的场景中也能进行定位。

简而言之,在V2X和ADAS应用的时代,GNSS终于实现了技术成熟。

然而,并非所有进步都发生在GNSS接收器中。在摩尔定律的影响下,硬件尺寸逐渐缩小为适用于大众市场的便携式低功耗设备的微型芯片。无处不在的无线互联网连接使GNSS校正服务能够最大限度地减少电离层对GNSS精度的影响,而电离层影响正是GNSS误差的主要来源。此外,国家层面和国际层面对于太空领域的投资为我们提供了为创新应用量身定制的新卫星系统。这使得接收器能够使用更多(可见)卫星,进而获得关键性的优势。

这些进步将使我们能够为车辆配备最新一代多频带、多星座GNSS接收器,提供亚米级的精度(甚至可达几十厘米),具体取决于应用的要求。

但是我们需要的并不仅仅是定位精度的提高。低延迟是新兴应用提出的另一项关键要求,例如“车辆到一切”(V2X)通信。在V2X中,车辆使用无线消息相互“交谈”或与路边基础设施“交谈”,并在合流和超车时传递关于移动位置的警告和信息,以及在交叉路口协商优先权。

GNSS19120901.pngV2X用例中延迟的影响。

在影响最小的情况下,较长的延迟可能会造成困扰、导致不必要的制动和加速、降低车流效率以及乘客舒适度。而在最糟糕的情况下,延迟可能会是致命的。特别是在高速公路上,车辆每100毫秒就会驶过一辆汽车的长度。在大多数用例中,V2X通信所采用的ETSI(欧洲电信标准协会)标准要求系统级别的延迟低于100毫秒。

下表总结了汽车市场中不同应用的要求。

GNSS19120902.JPG注:所有应用都需要惯性导航技术,包括轮速信息。CEP50值对应于覆盖所有位置测量值的50%的圆的半径。

先进的传感器融合滤波器,收敛时间更短

对于ADAS、V2X,以及为了最终实现自动驾驶,即使在充满挑战的环境中,GNSS接收器也必须能够稳健地提供车道定位。当卫星信号暂时受阻时,它们需要在几秒钟内恢复高精度定位。这可以通过将下列多个互补的传感器进行融合滤波来实现。

GNSS19120903.png单融合滤波器,用于高精度定位解决方案

多星座、多频段GNSS接收器:全球GNSS星座的数量已从一个(GPS)增加到四个(GPS、GLONASS、北斗、伽利略),这意味着接收器能够在任何给定位置“看到”更多卫星。这样就能解决接收器需要更多卫星才能准确定位的问题: 只有单个星座时,需要使用四颗卫星;但存在三个星座时,大约需要使用七颗卫星(为了计算星座之间的时间差,这些星座本身具有彼此不同的时间参考系)。

除了更多卫星,多频带GNSS接收器还可以组合不同频率的信号,每个信号都能在特定应用中发挥优势。例如,同时处理来自不同频率的两个信号可有效消除高达99.9%的电离层误差。另一种称为“几何无关组合”( geometry-free combination)的技术有助于检测载波相位中的周跳。所有这些技术仅能由多频段接收器实现。

实时动态(RTK)算法:标准精度的GNSS接收器跟踪至少四颗GNSS卫星的GNSS信号码相位来实现三角定位,而高精度GNSS接收器跟踪高频载波的相位。为了解决载波相位模糊的问题,高精度GNSS接收器利用实时动态(RTK)算法。这些算法已被集成到部分GNSS接收器模块中。RTK算法广泛使用通过无线连接提供的校正数据。对于汽车市场,基于蜂窝网络和卫星L波段的通信非常适合。除了节约数据传输成本之外,即使在蜂窝网络信号较差或根本不可用的农村地区,L波段接收器也可以通过卫星接收RTK校正数据。

广播GNSS校正服务:GNSS校正服务提供商通过从基站网络监控GNSS信号来不断估算GNSS信号误差。 例如,精确点定位(PPP)-RTK服务可以补偿卫星时钟、轨道、信号偏差、全球电离层以及区域电离层和对流层效应。在理想情况下,这种校正在美国大陆等大片区域有效,并且对于带宽的要求也最低。传统服务基于粗略的位置估算并向单独用户发送定制的校正流,而现代服务提供商采用扩展性更强的方法,向所有用户广播相同的动态GNSS误差模型。
除了提高GNSS接收器精度之外,高质量的校正数据还能缩短接收器收敛到准确位置所需的时间。对于存在架空障碍物(例如天桥、公路标牌、树木和桥梁)的环境,这一特性对于正常驾驶至关重要,因为这些障碍物可能会暂时中断GNSS信号。

惯性传感器和传感器融合:多年来,惯性传感器已被用于增强GNSS定位服务。通过实现惯性导航(DR),它们使车辆定位系统能够弥补在隧道、停车场和其他挑战性的常见环境所遇到的GNSS信号缺失。通过融合由惯性测量单元(IMU)的各个组件收集的数据,定位模块可以在GNSS信号受阻的环境中继续提供估算位置。

当GNSS信号接收暂时中断时,惯性传感器和传感器融合有助于定位解决方案保持位置和速度的相关信息。与纯GNSS解决方案相比,融合解决方案可在卫星信号再次可用时,缩短重新收敛时间,即解出载波相位模糊所需的时间。

车载传感器:结合车载传感器(例如轮速传感器)的数据,进一步提高惯性导航解决方案的性能。如果算法发现车轮没有移动,就可以忽略GNSS系统(由于信号误差)上报的位置变化。使用轮速传感器加权计算得出的速度估计比仅依赖于有噪声的加速度计更加准确。此外,对轮速传感器的移动距离的持续校准, 可以修正冬季和夏季轮胎变化引入的误差。

动态模型:车辆的动态模型能够限制测量误差对于位置估算的影响。模型假设车辆不会横向滑动、垂直跳跃或以任何不合理的方式加速。所有GNSS测量数据在用于导航滤波器之前,将由该动态模型检查其合理性。

Magazine191218.jpg

量化隧道中的表现

量化上述方案在隧道中的表现是一项极具挑战的任务。首先,主要误差源是传感器误差,并且当它们被整合以得出车辆的速度(加速度计)和姿态(陀螺仪)时,误差会趋于累积。这主要是因为误差源于随机而非系统性现象。为了正确表征其影响,需要收集相当数量的隧道数据并进行统计分析。其次,无法获得确切的“真实”位置来与测量结果进行比较。理想情况下,应在这些隧道内使用基于完全不同技术获得的定位作为参考,以消除GNSS信号被遮挡带来的影响。最后,即使是基于惯性传感器的昂贵参考系统也会在一定程度上出现漂移误差。

我们首先使用在开阔天空条件下收集的数据创建虚拟隧道,而不是在实际隧道中测试真实系统的设置。为此,我们“断开”GNSS信号以模拟GNSS信号中断,迫使系统在惯性导航模式下导航。这样,我们就能将惯性测量单元(IMU)的性能与高端真值系统进行比较。记录惯性导航解决方案和高端参考GNSS接收器的位置输出可为我们提供必要的数据,以比较不同长度的隧道中的性能。通过这个简单的技巧,我们就能运行一组足够大的测试,以便对性能进行定量分析, 获得具有统计显著性的结果。

GNSS19120904.jpg无GNSS的惯性导航模式下,行进距离上的定位误差。

在上图中,通过分析31次测试产生的1758次信号中断的数据,我们确定在惯性导航模式下,我们在行进距离上的定位误差约为2%。换句话说,每行驶一公里,水平定位的误差平均增加20米。值得注意的是,惯性测量单元(IMU)的表现对于隧道测试结果有显著的影响。在我们的配置中,我们使用了具有平均性能而非高端性能的标准IMU。

在实际道路上测试

隧道模拟只是更广泛设备测试的一部分。为了验证上述的技术组合,即通过组合多频带、多星座的GNSS接收器与内置RTK算法、广播GNSS校正数据、用于惯性导航的IMU、外部轮速传感器和动态车辆模型,可靠地提供车道准确定位,我们还在复杂程度不同的多种情况下进行了测试。由于GNSS和IMU误差的随机性,与下面给出的结果相比,单独测试的结果可能超出或低于所示表现。

在最近的高速公路行驶中,主要是在开阔天空条件下(挑战性最低的场景),我们的解决方案可提供100%的可用性,并且在50%的时间内精度达5.8厘米。水平速度分量在68%的时间内的精度为0.02 km/h。

在我们的测试中,我们在RTK固定解(载波相位整数模糊度固定)、RTK浮点解(载波相位整数模糊度未固定)和惯性导航之间进行了占比统计,分别是82%比14.8%比3.1%。总而言之,这一解决方案的精度比现有的单频段接收机提高了十倍。但是,必须注意的是,RTK固定解和浮点解的比率可能会产生误导。对于同一接收器,在评估精度时,这一比率可出色地指示不同测试轨迹之间的相对难度水平。但在比较两个接收器的性能时,它不是一个有用的指标。

与单频段、无RTK配置相比,在巴黎高速公路和典型城区的开阔天空条件下测得的结果显示了出色的性能提升。在最糟糕的情况下,即在巴黎La Défense 区进行的城市峡谷测试,其表现依然超过V2X应用的要求。即使GNSS接收器无法完全固定载波相位的整周模糊度,CEP68也可以达到约1.1米的精度,而且解决方案在95%的时间内精度为小于1.7米。这一情景清楚显示了所用的技术是如何在最具挑战性的城市环境中提高定位表现的。

最后,我们在瑞典哥德堡一条两公里的隧道中测试了我们解决方案的表现,其结果比我们在模拟中的表现更好。与预期相比,漂移误差降低了50%,行进距离上的定位误差为1%。此外,收敛到车道级精度只需两秒。这样的快速收敛表现基于多种因素的组合,包括多频GNSS接收器、GNSS校正服务,以及通过惯性导航得出的相对准确的位置估算。显然,在长隧道中无法保持车道的准确定位。在这种情景中,高度自动化和无人驾驶的车辆可以使用互补的定位技术来弥补精度的损失。

GNSS19120905.JPG开阔天空:勃艮第的高速公路;城市:巴黎12-16区;城市峡谷:巴黎La Defense

为汽车GNSS提供明显的附加值

总而言之,通过在定位解决方案中组合多频带、多星座的GNSS接收器与内置RTK算法、广播GNSS校正数据、用于惯性导航的IMU、外部轮速传感器和动态车辆模型,即使在最具挑战性的环境中,也能实现准确、连续的车道定位。这样的定位能力还可以通过融合其他车辆传感器(例如摄像头和雷达)获得进一步增强,使我们的运输系统更加安全、舒适、高效。通过这一解决方案,GNSS技术能在惯性导航的辅助下得到增强,并为高级汽车应用做好准备。

我们发现这一解决方案在精度方面优于现有技术十倍。城市环境中的连续服务是通过多频段、多星座GNSS接收器的强大组合实现的。这一接收器能够在信号部分受阻的情景中最大化卫星的可见性、通过惯性导航弥补GNSS接收中的信号中断,以及从GNSS的中断中快速重新收敛。基于这一产品的精度和全球覆盖,以及GNSS是能够提供绝对真实位置和时间信息的唯一技术,高级汽车应用必将从这一整合方案中受益。

作者:Alex Ngi,u‑blox惯性导航产品策略部产品经理

责编:Amy Guan

本文为《电子工程专辑》12月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅 

也可点击立即下载,下载12月刊完整版。

EETC-1912-Download.JPG

阅读全文,请先
您可能感兴趣
近日,蔚来汽车获得独立的造车资质,不少“新势力”造车企业的老大哥们已经从与传统车企代工合作,纷纷获得资质”转正“。获得造车资质的还有理想、小鹏等车企。
一直以来,Arm以向市场提供IP授权业务为主,其合作伙伴基于Arm的IP来开发自家的解决方案和产品。近年来,Arm已经转向为一家计算平台公司,Arm不仅提供IP授权业务,也提供Arm 全面计算解决方案 (Arm® Total Compute Solutions)、Arm Neoverse™平台、Arm Corstone™ 以及 SOAFEE 等完整的计算平台。
未来在CTC电池底盘一体化基础上,如果再高度集成底盘、三电、热管理、被动安全、电子电器架构等领域,就可以在滑板底盘标准化硬件不变的情况下,一辆车最快可以在12个月之内完成工装调整和工艺验证。在此情况下,未来进入汽车领域的门槛也将进一步降低,一些轻资产玩家也可以最低风险进入汽车领域,而且快速实现汽车产品上市,甚至能够开启一轮汽车轻资产“DIY”时代。
合资企业对中国汽车行业的发展功不可没,入驻中国短短十几年,带动一大批国际知名汽车零部件在华投资建厂,在中国境内形成了一个完整的汽车产业链。这些汽车供应链,也是中国自主品牌够顺利发展起来的主要原因。但随着中国自主品牌汽车迅速崛起,以及新能源汽车的“改朝换代”,合资品牌汽车逐渐式微……
半导体IP领域排名前三中,有Synopsys和Cadence两大EDA公司,西门子EDA的前身 Mentor Graphics在创立早期也曾涉足 IP领域。但就国内来说,EDA公司和IP公司之间还是相对独立的。未来这一形势是否会进一步改变,EDA和IP公司之间是否能擦出更多火花?
华为与长安汽车签署了《投资合作备忘录》,华为拟成立一家新公司,聚焦智能网联汽车的智能驾驶系统及增量部件的研发、生产、销售和服务。继新公司成立后,华为车领域架构也会随之变化,有消息称,华为内部已经开始对员工进行调整,华为车BU员工转岗到该新公司将会获得N+1的补偿,同时可以保留华为内部股份,享有华为分红,员工签字到新公司后还能获得4月个的签字费。
根据TrendForce集邦咨询最新OLED技术及市场发展分析报告统计,在近期发表的摺叠新机中,UTG的市场渗透率已逾九成,随着摺叠手机规模持续成长,预估2023年UTG产值将达3.6亿美元;2024年可望挑战6亿美元。
随着终端及IC客户库存陆续消化至较为健康的水位,及下半年iPhone、Android阵营推出新机等有利因素,带动第三季智能手机、笔电相关零部件急单涌现,但高通胀风险仍在,短期市况依旧不明朗,故此波备货仅以急单方式进行。此外,台积电(TSMC)、三星(Samsung)3nm高价制程贡献营收亦对产值带来正面效益,带动2023年第三季前十大晶圆代工业者产值为282.9亿美元,环比增长7.9%。
治精微推出具过压保护OVP、低功耗、高精度运放ZJA3018
无线技术每天都在拯救生命,有些非常方式是人们意想不到的。在美国加利福尼亚州Scotts Valley,一名路过的慢跑者发现一处住宅冒出火焰后,按响了门铃,试图通知屋主。屋主不在家中,但无线门铃连接到了智能家居中枢,提醒屋主慢跑者试图联系。屋主立即向他提供了安全密码,让他跑进房子,从火场中救出了宠物。
作者:Jackie Gao,AMD工程师;来源:AMD开发者社区前言当FPGA开发者需要做RTL和C/C++联合仿真的时候,一些常用的方法包括使用MicroBlaze软核,或者使用QEMU仿真ZYNQ
来看看,你需不需要这门接收机设计课程吧(已更新八次)。如有需要,现在仍然可以报名。(1)前几天,号友发来她的听课笔记,我真的是泪流满面。感觉,自己这么长时间的备课,总算没白费。说实话,我备课的时候,真
点击左上角“锂电联盟会长”,即可关注!锂离子电池是一种二次电池(充电电池),它主要依靠Li+ 在两个电极之间往返嵌入和脱嵌来工作。随着能源汽车等下游产业不断发展,锂离子电池的生产规模正在不断扩大。本文
注:各大公司财政年度的起始时间不同于自然年,因此会出现财政季度、年度等与自然年不一致的情况。软件微软(Microsoft)公布截至2023年9月30日的2024财年第一财季业绩。第一财季营收为565.
EETOP编译自electronicdesign1.任何计算引擎,无论是CPU、GPU、FPGA还是定制ASIC,都可以加速GenAI不对。CPU 不具备完成任务的性能。GPU 具有标称性能,但效率较
自从集成电路发明以后,人类的电子信息技术开始腾飞,60年多年来,在摩尔定律的指导下,半导体集成电路的高速发展彻底改变了电子产品。以计算机为例,1946年诞生的世界第一台数字计算机重30吨,占地约140
要点2022 年中国的经济增长不如 2021 年强劲,COVID-19 限制令和持续封锁削弱了中国的经济和制造活动。2022 年,LV 变频器市场增长了 3%,其中大部分增长来自于上一年积压订单的交付
点击左上角“锂电联盟会长”,即可关注!有需要联系,王经理:18058289318相关阅读:锂离子电池制备材料/压力测试!锂电池自放电测量方法:静态与动态测量法!软包电池关键工艺问题!一文搞懂锂离子电池
点击左上角“锂电联盟会长”,即可关注!粉尘、水分和毛刺是锂离子电池生产过程中需要严格控制的关键因素。严格控制电池生产环境的粉尘对锂离子电池的安全和性能至关重要。生产环境粉尘控制不足会导致涂层表面产生大
芝能汽车出品11月,我国动力和储能电池合计产量为87.7GWh,实际拆解估算动力电池约为70.7GWh,同比上升11.5%,环比上升8.4%装车量44.9GWh,同比增长31.0%,环比增长14.5%