广告

适用于包络跟踪(ET)电源的多相三电平降压变换器设计

时间:2021-09-09 09:39:37 作者:Maurizio Di Paolo Emilio 阅读:
通过设计ZVS低通滤波器,可实现20 MHz LTE包络信号的跟踪,而多相降压变换器则完成了固有相位的维护和电流平衡。对于给定的设计额定值和PARP,与两电平降压转换器相比,本文建议的两相三电平降压转换器在平均功率方面效率更高。
广告

RF功率放大器(RFPA)需要庞大的冷却设备,众所周知,因为只要借助恒定的直流电源电压供电,它就会散发热量。所以通常冷却设备都会占据射频发射器系统的很大一部分。要提升RFPA的效率,根本原理和解决之道在于使用包络跟踪 (ET) 电源,因为这种电源调制器具有较高的峰-均峰值 (PARP)。 图1清楚地展示了一个ET功率放大器的简单功能框图。目前市场上已经有不同类型的ET电源,而且在具体类型中都有进一步的定义,如线性放大器、开关变换器、和线性辅助开关转换器。测量高达20 MHz的大信号带宽通常由单相或多相降压转换器来进行跟踪,这种转换器专用于4G LTE基站。在这种应用中有一个常见的问题,即在高频下对更高直流电压的处理。本文讨论并介绍了ET两相三电平降压转换器及其各项优点。这种设计因其高开关频率而具有较低的关断开关损耗,因此适用于PARP ET电源和更高带宽。本文还说明了这种转换器的工作原理和设计。

图1: ET电源

设计

图2清楚地表示了这种两相三电平降压转换器和ET应用ZVS四阶输出滤波器的功率级架构。RFPA 的行为可从电阻负载 RL中获知。图 3 和图 4 表明了在 Vin/2 处对飞跨电容器两端电压的正确控制。当0 < D < 0.5时,每相开关节点电压在0 和 Vin/2 之间切换;当0.5 < D < 1时,电压在Vin/2 和 Vin 之间切换。我们可以注意到,4倍于器件开关频率的纹波频率存在于总电流 IT中,最终带来开环转换器带宽的增强和滤波器尺寸的减小。 

图2:两相三电平降压变换器电路图

图 3:转换器在0 < D < 0.5 时的波形图 4:转换器在0.5 < D < 1 时的波形

器件选择

该设计选择了EPC800系列eGaN FET,原因在于其具有超小尺寸、零反向恢复率和较低的开关损耗。图 5 和图 6 清楚地表明,相比传统同类设计,在高达50 MHz的较高开关频率下,最大额定功率为115 W的三电平设计具有更高的效率。其低侧MOSFET (LSM)包括顶部两个器件S1x和S2x,以及底部两个器件S3x和S4x。S1x和S2x将电感器 L连接到输入直流总线/电容器的正极端子(称为高侧MOSFET (HSM));S3x和S4x将电感器 L连接到地/飞跨电容的负极端子。在低侧器件的栅极信号中引入适当的延迟可以帮助实现 LSM的ZVS导通。在高侧器件导通时,存在一定的耗散,这是因为缺乏负导体电流来通过寄生电容器进行充电/放电。如果在设计峰-峰纹波电流时,使其承载的电流是平均电流值的两倍,则HSM的ZVS导通也可以实现。L1值的正确设置将有助于平衡相电流,而无需任何电流控制回路的帮助。结果表明,时间与充电/放电开关和电感器负峰值电流以及L1的最大值成反比关系,以实现高侧开关的ZVS以及专用于N相三电平变换器的负载电阻、开关频率和占空比。表 1显示了四阶ZVS滤波器元件的负载电阻为 6.6 Ω。借助戴维南定理和叠加原理,简化后的两相三电平变换器电路如图7所示。

图 5:传统两电平降压转换器的开关频率效率比较

图 6:三电平降压变换器的开关频率效率对比

图 7:建议的两相三电平降压转换器的等效电路

结果与分析

在PLECS 仿真环境中,20 MHz带宽ET信号两相三电平降压转换器的开关节点电压和电感电流如图8所示。我们可以注意到,在开关节点电压为 (1) 0 V和15 V或(2) 15 V和30 V时出现切换,具体取决于输入包络命令值。与输入电压相比,GaN MOSFET 两端的电压应力被降低和限制。在平均功率条件下,该转换器在115 W时具有97.5%的峰值效率,在26 W时具有94.5%的平均频率。我们可以看出,这种设计可以实现10-dB PARP和90%以上的效率。

图 8:20 MHz两相三电平降压转换器的开关节点电压和电感器电流

结论未来应用范围

本文介绍了适于更高带宽ET应用的两相三电平降压变换器设计。功率损耗模型可帮助优化转换器的设计。通过设计ZVS低通滤波器,可实现20 MHz LTE包络信号的跟踪,而多相降压变换器则完成了固有相位的维护和电流平衡。对于给定的设计额定值和PARP,与两电平降压转换器相比,本文建议的两相三电平降压转换器在平均功率方面效率更高。这种两相三电平降压转换器的可扩展性也要高很多,可用于大功率ET应用。与此同时,它还可以实现更高带宽和PARP。仿真结果证明了其原理和操作。

(参考原文:Multi-Phase Three-Level Buck Converter for Envelope-Tracking Power Supply)

参考来源:

1. Multi-Phase Three-Level Buck Converter with Current Self-Balancing for High Bandwidth Envelope Tracking Power Supply Srikanth Yerra, Harish Krishnamoorthy Electrical and Computer Engineering University of Houston Houston, TX,

2. K.Moon, J.Kim, S.Jin, B.Park, Y.Cho, M.Park, and B.Kim, “Highly linear envelope tracking power amplifier with simple correction circuit,” in 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), May 2015, pp. 127–130.

3. S. Jin, K. Moon, B. Park, J. Kim, D. Kim, Y. Cho, H. Jin, M. Kwon, and B. Kim, “Dynamic feedback and biasing for a linear CMOS power amplifier with envelope tracking,” in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), June 2014, pp. 1–4.

4. M. Rodr ́ıguez, Y. Zhang, and D. Maksimovic ́, “High-Frequency PWM Buck Converters Using GaN-on-SiC HEMTs,” IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2462–2473, May 2014.

5. Y. Zhang, J. Strydom, M. de Rooij, and D. Maksimovic ́, “Envelope tracking GaN power supply for 4G cell phone base stations,” in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), March 2016, pp. 2292–2297.

6. H.Huang, J.Bao, and L.Zhang, “AMASH-Controlled Multilevel Power Converter for High-Efficiency RF Transmitters,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1205–1214, April 2011.

7. C. Florian, T. Cappello, R. P. Paganelli, D. Niessen, and F. Filicori, “Envelope Tracking of an RF High Power Amplifier With an 8-Level Digitally Controlled GaN-on-Si Supply Modulator,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 8, pp. 2589–2602, Aug 2015.

8. V.Yousefzadeh, E.Alarcon, and D.Maksimovic ́, “Band separation and efficiency optimization in linear-assisted switching power amplifiers,” in 2006 37th IEEE Power Electronics Specialists Conference, June 2006, pp. 1–7.

9. P. F. Miaja, M. Rodriguez, A. Rodriguez, and J. Sebastian, “A Lin- ear Assisted DC/DC Converter for Envelope Tracking and Envelope Elimination and Restoration Applications,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3302–3309, July 2012.

10. (2019) EPC8009 – Enhancement Mode Power Transistor. (Online). Available: http://epc- co.com/epc/Portals/0/epc/documents/datasheets/EPC8009 datasheet.pdf

11. (2019) EPC8004 – Enhancement Mode Power Transistor. (Online). Available: http://epc- co.com/epc/Portals/0/epc/documents/datasheets/EPC8004 datasheet.pdf

责编:Amy Guan

本文为《电子工程专辑》2021年9月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅 

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 拆解微软Xbox 360 S:为什么尺寸变小了,发热反而更少? 为了改善Xbox 360的散热,同时降低BOM成本,微软多次对第一代设计进行改进,到了2010年重新设计Xbox 360 S (Slim版)主机,将其CPU和GPU整合于同一封装中,大幅简化了系统的散热...
  • 520公里续航!特斯拉被比亚迪刀片电池装备下的电瓶车打 ​​​​​​​比亚迪与宁德时代不仅是中国也是世界最强大的新能源电池供应商,最近比亚迪的刀片电池被装在普通的两轮电瓶车上,其续航达到520公里,这一续航完败特斯拉。
  • 【中国“芯”领袖】微源半导体 – 国产电源管理芯片差 成立于2010年的微源半导体一直专注于以电源管理芯片为主的模拟芯片领域,目前拥有屏幕显示电源、电池管理、电源转换、保护、音频功放、信号链、功率器件及SoC八大产品线,包括显示屏专用PMIC芯片、P-Gamma、电平转换、背光驱动、充电管理、电池保护、过压保护、过流保护、升压芯片、降压芯片、线性稳压器LDO、栅极驱动、半桥全桥、运放、快充协议和音频功放等16大类产品......
  • “双碳”目标下隔离电源的新变化 碳中和、5G、AI、大数据等技术趋势正在改变电源产品的设计理念,市场对中大功率电源以及与之相关的隔离技术需求已大幅攀升。
  • 【中国“芯”领袖】赛微微电子:10年专研电池及电源管理 作为ASPENCORE旗下China Fabless项目的一个重要板块,【中国“芯”领袖】特别报道系列精心挑选综合实力和增长潜力均表现突出的中国IC设计公司,通过采访公司高管(创始人/董事长/CEO/CTO/营销负责人)对其进行全方位的展示和深入观察。本期报道的是广东赛微微电子股份有限公司,受访者是市场总监周军先生。
  • 笔记本接电源or用电池,你猜性能差距有多大… 笔记本电脑在插电(外接电源)和使用电池两个场景下,性能表现是有差距的。一般来说,使用电池时,笔记本的性能会受到限制。这是多方面因素所致,包括用户的续航需求,以及供电设计的一些限制。而且这种限制不仅表现在“节能模式”中,即便在Windows操作系统下保持开启“最佳性能”,用电池一样会有性能限制……
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。

  • Qorvo® 推出首款单个模块即可支 Qorvo今日推出首款覆盖5.1GHz至7.1GHz频段的宽带前端模块 (FEM),不仅能最大限度地提高容量,而且还能简化设计,缩短产品上市时间,并将前端电路板空间减少50%,适用于Wi-Fi 6E企业级架构。
  • 5G 基础设施的驱动 根据全球移动通信系统协会 GSMA 提供的数据,5G 目前正在顺利推广中,预计将在 2025 年覆盖全球三分之一的人口。另外根据全球领先综合数据库Statista 的调查,主要手机制造商皆已推出 5G 手机,这将使那些希望以理论上高达 50Gb/s 的最大速度传输数据流和视频的人感到满意,预计到 2023 年全球 5G 订阅量将达到 13 亿 。
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了