广告

双碳大势下第三代半导体的技术和应用创新

时间:2022-03-15 14:17:34 作者:顾正书 阅读:
中国的碳达峰和碳中和计划,不用说对中国、就是对整个“地球村”而言,都不得不堪称为一个宏伟目标。如何优化能源结构?减碳的主要途径在哪里?又如何有效提高能源利用效率?且听专家们解析如何基于新兴的第三代半导体新技术和应用创新,逐步勾勒出实现上述宏伟目标的各种有效途径……
广告

2021年3月,中国将减缓气候变化的行动纳入“十四五”规划,制定了2030年碳达峰行动计划,并积极采取行动实现2060年碳中和的目标。“实施以碳强度控制为主、碳排放总量控制为辅的制度,支持有条件的地方和重点行业、重点企业率先达到碳排放峰值”,在这一政策的驱动下,中国半导体产业和市场必将发生巨大变化,新兴的第三代半导体将迎来更大的市场机会。

实现双碳目标的重要途经

从当前的能源使用占比、发电量和用电量结构来看,提高光伏风电发电量占比、普及交通电气化,以及提升工业用电效率是实现2030年碳达峰和2060年碳中和的重要途径。

首先,光伏将逐步从辅助能源成为主力能源。2020年底,我国光伏装机容量为253GW,占全国总发电量的3.4%;到2030年全球光伏新增装机将超2000GW,我国将占一半;到2060年达到碳中和时,我国光伏装机将达到2020年的70多倍,在全国总发电量中的占比将达到43.2%,成为主要的能源形式。

其次,交通电气化全面提速和加速渗透。交通行业碳减排依赖于电动车渗透率的全面提升,电动化的长期趋势是明确的。我国提出2025年新能源车占比目标20%,预计到2025年新能源车销量将超700万辆。此外,与新能源车增长同步的还有充电桩的部署。

第三,工业用电量占比是最大的,其中主要包括工厂设备电机驱动、高频加热、数据中心和5G通讯等。这类设备中能源转换和供电效率的全面提升也是减排的重要组成部分。

无论储能、供电还是充电应用,都要求高压、高效和高可靠的功率变换。而以氮化镓(GaN)和碳化硅(SiC)为代表的第三代半导体材料和器件是实现效率提升的关键,因为基于氮化镓或碳化硅的器件和设备可以满足高压、高效和高可靠性功率转换的要求。

提高能源利用效率的技术创新

新技术能够更有效、更快速地减少二氧化碳排放。据统计,借助第三代半导体新技术,每生产10万片SiC晶圆可较常规的生产方式减少4,000吨的碳排放。与目前的硅基IGBT相比,第三代半导体新技术的环保性能显然更高。

要提升能源利用效率,首先要降低功率变换过程自身的损耗,这主要体现在开关损耗和导通损耗。对于同一类技术,如平面型或沟槽型工艺,单位面积导通电阻(Rsp)越小,其相对开关损耗也越小。因此,导通电阻(Rsp)成了第三代半导体厂商技术开发的竞赛制高点。

瞻芯电子CTO叶忠博士

据上海瞻芯电子CTO叶忠博士介绍,对于中低压(650V-3300V)碳化硅MOSFET而言,沟道电阻是Rsp的较高占比部分,因此降低沟道电阻是最为关键的技术创新点之一。主要的技术路线包括:优化SiC/SiO2界面特性来提高电子沟道迁移率;通过新颖的元胞结构设计来提高单位面积内的沟道密度;提升工艺线宽控制来降低元胞尺寸从而增加元胞密度等。另外,还可以通过引入超级结(Super Junction)技术来降低耐压区(或者说漂移区)的电阻占比,这类技术改善对于中高压(1200V-10000V)SiC MOSFET而言也非常有价值。瞻芯电子的SiC MOSFET平台采用了优化的SiO2/SiC界面钝化技术,以及紧凑的元胞尺寸设计,在平面型技术上达到了业界一流的Rsp水平。这些工艺的不断改进可以降低器件损耗,从而提高能源利用效率。

虽然第三代半导体有极优越的开关特性,但要使这种特性充分发挥出来,其封装和栅极驱动也很重要。漏极电压振荡、栅极驱动的正负尖峰和EMI是困扰第三代半导体往更高开关速度和更高效率推进的主要因素。因此,低漏感的封装,以及专用且具有恒dv/dt控制功能的栅极驱动芯片开发也是提升能源利用效率的关键。

Soitec CEO Paul Boudre

Soitec公司CEO Paul Boudre认为,通过优化晶圆,第三代半导体材料可以减少碳排放,这是功率电子的基石,其功率转换对电动汽车、电网和可再生能源的效率而言至关重要。Soitec专注于碳化硅新材料的研发,它是节能功率器件的重要基础。除传统SiC外,Soitec还通过开发SmartSiC尖端晶圆材料来不断提高行业标准。Soitec利用SmartSiC在多晶碳化硅的超低电阻率处理器上创建了基于SiC薄层的新一代优化衬底。

PI营销副总裁Doug Bailey

Power Integrations公司营销副总裁Doug Bailey认为,从效率、RDS(on)、开关速度、尺寸和热管理等方面来看,氮化镓是一种比硅更好的开关材料,许多终端产品最终都将使用氮化镓来替代硅器件。PI开发的EcoSmart芯片作为电源的大脑,不仅提供产品运行所需的电压和电流,而且还可以智能地管理电源流,即使在轻载下也能保持高效率。没有负载时,EcoSmart技术可有效关闭电源,使功率接近于零。据PI估计,迄今为止EcoSmart技术已节省近1500亿千瓦时的能源。

PI已经开发出更大功率、更高效的氮化镓开关InnoSwitch电源IC,并且已经用这些新器件升级了InnoSwitch-4和ClampZero产品系列。其中InnoSwitch4-CZ可提供高达220W的功率,效率超过95%,为可变输出电源的谐振变换器提供了一种更灵活、成本更低的替代方案。

此外,随着全球范围内新的能效法规开始生效,PI的BridgeSwitch BLDC(无刷直流)电机驱动器也开始被广泛采用。BridgeSwitch IC可使400W以内的无刷直流电机驱动应用中的逆变器转换效率达到98.5%以上,它所提供的优异效率和分布式散热架构可省去散热片,有助于降低系统成本和重量。

基于SiC的新能源车应用方案

第三代半导体由于具有优异的效率水平,可在新能源汽车中发挥巨大作用。预计氮化镓开关最终将被用于许多高压电动汽车应用方案,但目前而言,SiC在新能源汽车应用中占主导地位。

新能源车应用分充电和车载两大部分。在充电方面,由于越来越多的充电桩建在交通方便但环境较复杂的商业区,这要求充电桩的体积小、充电速度快,而且抗水气和尘埃能力强。因此,高密、高压、高功率和高可靠设计是元器件供应商和整机厂家追求的指标。SiC是目前最好的耐高压且高效率的开关半导体材料,很合适高功率应用。高效的开关特性使充电桩模块的电路功率密度提高,腾出空间给独立风道,从而提高抗水气和尘埃能力。

车载方面,应用主要包括主驱逆变器、OBC、HVDC/12V DC/DC变换器,以及空调或氢燃料压缩机等。特斯拉Model 3率先将碳化硅应用于汽车主驱系统,主驱效率的提升带来了明显的系统效益(约省电池或增车程8-10%)。除优越的开关特性外,碳化硅的耐高压和高温特性也使它很合适车用要求。采用碳化硅器件也可以使OBC和DC/DC变换器的功率密度进一步得到提升,使体积和重量减小。对于800V系统,这种优势尤其突出。由于高速压缩器的使用,开关频率需成倍增加,硅基IGBT已难满足这种要求,目前来看碳化硅已成唯一选择。

Soitec在不断加大对SmartSiC技术的投入,因为其超低电阻率能够帮助晶圆片实现更好的性能和更高的表面质量和平整度,进而更好地提高良率。据Paul Boudre称,SmartSiC已经为SiC器件制造商创造了巨大的价值。在系统级别上,芯片可增加至40 mm2,从而进一步节省成本。基于SmartSiC技术的SiC器件能效更高,可用于电动汽车动力系统的牵引逆变器或车载充电器。

据叶忠称,目前瞻芯已有多款SiC器件推向汽车应用,其中17mOhm/1200V裸管芯已被国内多家车厂用于模块开发;17mOhm/1200V TO-247单管与比邻驱动IVCR1412配套,也被用于大功率多管并联的电驱开发;比邻驱动IVCR1401/1402则与80mOhm/1200V TO-247-4 SiC MOSFET配套用于车载OBC和空压机设计。

针对SiC驱动系统应用,Doug Bailey强调PI的SCALE iDriver门极驱动IC可提供最大峰值输出门极电流且无需外部推动级,经过设定后可支持不同的门极驱动电压,以满足SiC-MOSFET的需求。其FluxLink技术可省去寿命相对较短的光电器件和相关补偿电路,从而增强系统运行的可靠性,同时降低系统的复杂度。SCALE-iDriver IC已通过AEC-Q100汽车级认证,可在125°C结温下提供8A驱动,并且可在不使用推动级的情况下支持输出功率在数百千瓦以内的600V、650V、750V和1200V IGBT和SiC逆变器设计。

除了传动系统,Innoswitch3器件还可用于牵引逆变器MOSFET或IGBT驱动器的30W应急电源(EPS)。在车辆行驶过程中,车载12V电池如果出现故障,EPS电源可使牵引逆变器继续工作。当发生故障时,InnoSwitch-3 IC直接从大功率电池母线上取电,该母线本身将被板载安全放电电路迅速降低到低于SELV 60V的阈值。为了提供额外的裕量,应急电源必须能够在400V电池母线电压降至约30V时继续正常工作。

PI正在开发新的基于氮化镓的元件,以应对从400V到800V母线系统的转变。这种提高母线电压的趋势具有明显的优势,包括缩短电池充电时间、提高驱动效率、降低铜成本,以及减轻牵引驱动的重量。这种改变还可让牵引电机具有更高的功率密度,这已经在高性能汽车及商用卡车/货车中得到了验证,这些车辆需要更高的加速度和更大的承载力。

基于第三代半导体的其它应用创新

半导体材料的更新换代将会为功率器件开关特性带来质的飞跃。可以这么说,几乎所有硅半导体的功率变换应用场合都适用于第三代半导体氮化镓和碳化硅。在低于650V的应用场合,氮化镓比较合适,而高于650V的应用碳化硅则比较合适。在650V级的应用中,氮化镓和碳化硅将并存。

氮化镓器件受限于目前2D的平面型结构及管芯面积,在高压和低导通电阻之间难以做到两全齐美,而且没有雪崩能力。因此,氮化镓目前的应用多集中在手机充电、服务器和网络通信设备电源、无线电发射,以及激光雷达等领域。在这类应用中,氮化镓主要是替代硅MOSFET。

垂直型碳化硅器件是三维的,由于电流的垂直流动,其漏端(Drain)不占据元胞面积,还可以通过加厚外延层来提高耐压。因此,碳化硅更合适高压和大电流应用,如太阳能逆变器、UPS、大电机驱动、固态变压器、智能电网、储能、工业高频加热、工业切割焊接、轨道交通、医用MRI/CT,以及军用声纳雷达电磁干扰等。在这类应用中,碳化硅主要是替代硅IGBT。

目前,无论碳化硅还是氮化镓,都还处于应用的初期。随着器件工艺技术的进一步成熟和成本降低,它们将有更广泛的用武之地,从而在双碳目标的实现中发挥更大价值。在2022年4月20日,Aspencore将在上海国际会议中心举办IIC Shanghai (国际集成电路展览会暨研讨会),其中20日举办的2022 国际“碳中和”电子产业发展高峰论坛,将有ADI、英飞凌、智芯微电子、纳芯微电子等半导体原厂,及阳光电源、阳氢集团、京东方能源等能源行业企业参与,欢迎报名到场交流 https://aspencore.mike-x.com/ViZFZN5

本文为《电子工程专辑》2021年12月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅

责编:Amy.wu
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
顾正书
ASPENCORE资深产业分析师。以深圳为坐标原点,扫描全球电子和半导体行业。专注于China Fabless和SoC设计细分市场的分析和学习,欢迎交流。
  • 功率半导体的创新驱动下一代能源网络建设,构建可持续发 下一代高效能源网络将建立在具有存储能力的可再生能源之上,同时将非常有效地利用由电动汽车、变频电机和高效负载驱动的网络。出色的硅和 SiC 开关技术、高效可靠的封装和弹性供应链,是未来能实现净零排放的关键驱动力......
  • 美国ITC对特定功率半导体等启动337调查,联想、一加、TC 近日美国国际贸易委员会(ITC)发布新闻显示,美国国际贸易委员会已投票投票决定对特定功率半导体以及包含该功率半导体的移动设备和计算机启动 337 调查......
  • 借助高能效GaN转换器,提高充电器和适配器设计的功率密 本文阐述了如何将英飞凌的CoolGaN™集成功率级(IPS)技术应用于有源钳位反激式(ACF)、混合反激式(HFB)和LLC转换器拓扑。采取这种方式可以更快速、更轻松地设计出充电器和适配器解决方案,以打造更小巧、更轻便的产品,或者虽尺寸相同但功率更高的产品,用于为设备快速充电,或用一个适配器为多个设备充电。
  • 传英飞凌代工厂汉磊全面调涨,最高达50% 供应链传出消息,受惠于车用MOSFET等功率半导体需求强劲,加上6英寸芯片代工厂产能满载,汉磊作为芯片代工厂,将针对大客户英飞凌全面调涨报价,幅度最高达50%,同时积极扩大第三代半导体碳化硅(SiC)的产能,预计今年出货量将呈倍数级成长。
  • 追风逐日,一文读懂英飞凌绿色能源战略 不断提高可再生能源在我国能源结构中的比重,不断推进各行各业节能减排的进程,是实现中国政府提出的30/60目标的两大必要条件。作为全球功率半导体领军企业,英飞凌非常看好新能源行业未来的发展前景,并正积极参与其中。
  • 拆解MICROCHIP微芯300W无线充电模块,实测效率高达90% 近日MICROCHIP微芯官网上架了一款300W中功率无线充电方案。作为全球领先的单片机和模拟半导体供货商,该方案的推出意味着MICROCHIP已经开始布局工业级无线充电技术。
  • 新款iPad Pro 2021成最受欢迎的 由于采用性能相对强大的M1处理器和mini-LED屏幕以及更多的创新,新款iPad Pro 2021已经成为消费者心目中最受欢迎。然而,iPad 2却已经在全球范围内被列入“复古和过时”的名单中。
  • 三星折叠屏手机Galaxy Z Fold 3 目前来看,折叠屏新机作为一种新的生产力工具,逐渐成为高端/平板的一种趋势,有报料称三星的Galaxy Z Fold 3发布时间或为7月,并且会引入新手势操控。
  • Porotech动态像素调整技术实现Micr 由于我们彻底巅覆 GaN 的半导体材料和结构技术,让我们突破在单位像素上呈现全光谱颜色。同时,PoroGaN微显示平台的光电特性,简化了电子和光电系统设计集成的过程。目前微米纳米级的Micro-LED 和 Mini-LED 显示器在制造所需的多阶段工艺仍然具有挑战性,凭借 Porotech 的多孔氮化镓 (GaN) 技术和架构平台,可以大幅简化现有质量转移(Mass Transfer)或拾取和放置(Pick-and-Place)等Micro-LED制程。
  • 豪威集团在AutoSens展会上首次推出 OAX4600可实现无缝隙的驾驶员/乘员监控系统功能和灵活的汽车设计,在较小的封装内集成低功耗的RGB-IR ISP和两个NPU 
  • 京东方|计划下半年启动重庆新建的第3条中小尺寸OLED产线 来源:紫金财经5月9日消息,京东方自2022年第1季启动成都、绵阳新设的第6代OLED产线,计划自2022年下半启动重庆新建的第3条中小尺寸OLED产线。外界预估,2022年京东方OLED产量有望超过
  • Keil调试时设置断点的高级用法 在线调试程序时,打断点是非常有效的一种方式,配合单步调试,可以快速定位问题。但有的时候,手动打断点用起来不是那么方便。比如,想要在一个循环的第N次停下来,如果手动打断点,那就要不停的点击单步运行,直到
  • 一电路板产业园四期厂房预计6月底完工 广告分割线2022年5月7日,重庆市招商投资促进局局长周波,区委常委、组织部部长李皓、副区长谢勇,以及区级相关部门主要负责人莅临重庆电子电路产业园调研指导,重庆瑜瀚电子科技有限公司总经理刘尚佺全程陪同
  • 以后哪款单片机发展最好? 你点击蓝字关注,回复“入门资料”获取单片机入门到高级开挂教程文 | 无际(微信:603311638)全文约1181字,阅读大约需要 3 分钟从事开发10年了,我来说说我个人见解。首先,除非是顶尖的垄断
  • 电动车企黑马Rivian“失蹄”的背后   文 | 乔伊风险投资,顾名思义,是越有风险越投资,没有风险绝不投资。这么说吧,Rivian这个项目,它太有风险了!就在前天,福特宣布将通过高盛,出售自己持有的800万股Rivian股票。这么做的理
  • AR|PPI破万!光峰科技发布两款衍射光波导模组:0.5cc超小体积、最高可达720P 来源:VR陀螺、光峰科技5 月 7 日消息,光峰科技在深圳举办 AR 阶段性成果媒体交流会,公布了其 AR 衍射光波导模组阶段性成果进展,本次曝光的模组产品共两款。据称,公司很早就开始了 AR 的布局
  • 相约周四晚8点分享双非和材料背景的IC转岗经历 古德猫宁~又要到了新一期卤煮验证的时间。年后开始国内疫情一直反反复复,估计很多同学都多少受到了影响。不知道工作进度缓慢的同时大家有没有趁此机会抓紧学(躺)习(平)呢?Just kidding~小编知道
  • 南京大学、东南大学团队突破双层二维半导体外延生长核心技术,成果登上《自然》正刊! 芯片验证春季班开班!1750元学习补助即将收尾!就业畅销课《芯片验证从入门到精通》近日,南京大学王欣然教授团队与东南大学王金兰教授团队合作,实现厘米级均匀的双层二硫化钼薄膜可控外延生长,该成果近日发表
  • 台湾地区再发地震,台积电、联电等回应影响 芯片验证春季班开班!1750元学习补助即将收尾!就业畅销课《芯片验证从入门到精通》中国地震台网正式测定,5月9日14时23分台湾地区花莲县海域(北纬24.01度,东经122.51度)发生6.2级地震,
  • 上海,重庆,无锡岗位 1. 上海/重庆需要手机项目经理,要求3-5年以上手机类产品项目管理经验,如果有手机硬件或者软件技术背景,项目管理经验可以降低到2年以上。 本科以上学历,手机ODM背景相对对口。2. 上海需要手机安卓
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了